On the ``Reverse Order Law'' Related to the Generalized Inverse of Matrix Products

The “reverse order law” related to ordinary inverses of matrix products, i.e., (<italic>AB</italic>)<supscrpt>-1</supscrpt> = <italic>B</italic><supscrpt>-1</supscrpt><italic>A</italic><supscrpt>-1</supscrpt>, is generally not transferable to the generalized inverse. There are, however, applications in which the reverse order law related to the generalized inverse reveals interesting properties in certain classes of matrices. In this paper, some necessary and sufficient conditions for the reverse order property to hold are given.

[1]  I. Erdelyi On Partial Isometries in Finite-Dimensional Euclidean Spaces , 1966 .

[2]  Adi Ben-Israel,et al.  An iterative method for computing the generalized inverse of an arbitrary matrix , 1965 .

[3]  L. D. Pyle,et al.  Generalized Inverse Computations Using the Gradient Projection Method , 1964, JACM.

[4]  R. E. Cline Representations for the Generalized Inverse of a Partitioned Matrix , 1964 .

[5]  J. Chipman,et al.  Projections, generalized inverses, and quadratic forms , 1964 .

[6]  Charles M. Price,et al.  The Matrix Pseudoinverse and Minimal Variance Estimates , 1964 .

[7]  A. Charnes,et al.  Contributions to the Theory of Generalized Inverses , 1963 .

[8]  C. Desoer,et al.  A Note on Pseudoinverses , 1963 .

[9]  J. Boot,et al.  The Computation of the Generalized Inverse of singular or Rectangular Matrices , 1963 .

[10]  M. Hestenes Inversion of Matrices by Biorthogonalization and Related Results , 1958 .

[11]  R. Penrose A generalized inverse for matrices , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Randall E. Cline,et al.  Representations for the Generalized Inverse of Sums of Matrices , 1965 .

[13]  Randall E. Cline,et al.  Note on the Generalized Inverse of the Product of Matrices , 1964 .

[14]  T. Greville,et al.  Some Applications of the Pseudoinverse of a Matrix , 1960 .

[15]  T. Greville The Pseudoinverse of a Rectangular or Singular Matrix and Its Application to the Solution of Systems of Linear Equations , 1959 .