Electroencephalographic slowing: A primary source of error in automatic seizure detection
暂无分享,去创建一个
M. Golmohammadi | I. Obeid | J. Picone | E. von Weltin | V. Shah | J. Picone | I. Obeid | M. Golmohammadi | E. von Weltin | T. Ahsan | V. Shah | D. Jamshed | T. Ahsan | D. Jamshed
[1] T. Tsuboi,et al. EEG Abnormalities in Nonepileptic Patients , 1985, Folia psychiatrica et neurologica japonica.
[2] C. Elger,et al. Interictal EEG Abnormalities in Patients with Psychogenic Nonepileptic Seizures , 2002, Epilepsia.
[3] S. Muthukumaraswamy. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations , 2013, Front. Hum. Neurosci..
[4] John S Ebersole,et al. Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy , 2011, Epilepsia.
[5] I. Obeid,et al. The TUH EEG CORPUS: A big data resource for automated EEG interpretation , 2014, 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).
[6] F. H. Lopes da Silva,et al. Dynamics of convulsive seizure termination and postictal generalized EEG suppression , 2017, Brain : a journal of neurology.
[7] Georgios D. Mitsis,et al. Automatic detection and removal of muscle artifacts from scalp EEG recordings in patients with epilepsy , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
[8] M. Andraus,et al. Non-epileptiform EEG abnormalities: an overview. , 2011, Arquivos de neuro-psiquiatria.
[9] Joseph Picone,et al. Deep Architectures for Automated Seizure Detection in Scalp EEGs , 2017, ArXiv.
[10] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..