Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar -type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage () of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

[1]  A. Cuevas,et al.  Very low bulk and surface recombination in oxidized silicon wafers , 2002 .

[2]  Kirk Ct,et al.  Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988 .

[3]  M. Vaněček,et al.  Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen contents , 1998 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  A. Aberle,et al.  Extremely low surface recombination velocities on low‐resistivity n‐type and p‐type crystalline silicon using dynamically deposited remote plasma silicon nitride films , 2014 .

[6]  T. Mueller,et al.  Crystalline Silicon Surface Passivation by Pecv-Deposited Hydrogenated Amorphous Silicon Oxide Films [a-SiOx:H] , 2007 .

[7]  U. Rau,et al.  Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon solar cells , 2012 .

[8]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[9]  B. G. Brooks,et al.  Optical characterization of amorphous silicon hydride films , 1980 .

[10]  Makoto Tanaka,et al.  Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer) , 1992 .

[11]  M. Stutzmann,et al.  Doping and its efficiency ina−SiOx:H , 2004 .

[12]  Magnus Willander,et al.  Study of structural and optical properties of nanocrystalline silicon embedded in SiO2 , 2000 .

[13]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[14]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[15]  Kirk Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988, Physical review. B, Condensed matter.

[16]  Arvind Shah,et al.  From amorphous to microcrystalline silicon films prepared by / hydrogen dilution using the VHF 70 MHz GD technique , 1998 .

[17]  S. Huang,et al.  Amorphous/crystalline silicon heterojunction solar cells via remote inductively coupled plasma processing , 2012 .

[18]  D. He,et al.  Deposition of controllable preferred orientation silicon films on glass by inductively coupled plasma chemical vapor deposition , 2008 .

[19]  Johnson Wong,et al.  Optimisation of Intrinsic a-Si:H Passivation Layers in Crystalline-amorphous Silicon Heterojunction Solar Cells , 2012 .

[20]  J. Pankove,et al.  Amorphous silicon as a passivant for crystalline silicon , 1979 .

[21]  Armin G. Aberle,et al.  Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors , 1999 .

[22]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[23]  L. Ley,et al.  Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon , 1980 .

[24]  T. Mueller,et al.  Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications , 2010 .

[25]  S. Glunz,et al.  Improved parameterization of Auger recombination in silicon , 2012 .

[26]  R. Schropp,et al.  Hydrogen at compact sites in hot-wire chemical vapour deposited polycrystalline silicon films , 2000 .

[27]  T. Mueller,et al.  High quality passivation for heterojunction solar cells by hydrogenated amorphous silicon suboxide films , 2008 .

[28]  M. Ivanda,et al.  Microstructural properties of dc magnetron sputtered a-Si:H by IR spectroscopy , 1992 .

[29]  M. Taguchi,et al.  More than 16% solar cells with a new 'HIT' (doped a-Si/nondoped a-Si/crystalline Si) structure , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[30]  Joshua M. Pearce,et al.  Optimization of protocrystalline silicon p-type layers for amorphous silicon n–i–p solar cells , 2004 .

[31]  Doriana Dimova-Malinovska,et al.  Optical and electrical properties of doped amorphous silicon suboxides , 1999 .

[32]  H. Fujiwara,et al.  Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells , 2007 .

[33]  H. R. Philipp,et al.  Optical and bonding model for non-crystalline SiOx and SiOxNy materials , 1972 .

[34]  G. Lucovsky,et al.  Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition , 1986 .

[35]  Johnson Wong,et al.  Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy , 2013 .

[36]  M. Kondo,et al.  Abruptness of a-Si :H/c-Si interface revealed by carrier lifetime measurements , 2007 .

[37]  Wolodymyr Czubatyj,et al.  Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films , 1983 .

[38]  B. Rech,et al.  Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions , 2010 .

[39]  M. Taguchi,et al.  HITTM cells—high-efficiency crystalline Si cells with novel structure , 2000 .

[40]  M. Vaněček,et al.  Silicon network relaxation in amorphous hydrogenated silicon , 1997 .

[41]  M. Taguchi,et al.  High-Efficiency HIT Solar Cell on Thin (<100 μm) Silicon Wafer , 2009 .

[42]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[43]  C. Ballif,et al.  Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment , 2011 .

[44]  D. Pysch,et al.  Comparison of intrinsic amorphous silicon buffer layers for silicon heterojunction solar cells deposited with different PECVD techniques , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[45]  H. Neitzert,et al.  Lead-free electrical conductive adhesives for solar cell interconnectors , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[46]  A. Cuevas,et al.  Low surface recombination velocity by low-absorption silicon nitride on c-Si , 2013, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[47]  Davidson,et al.  Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0 , 1989, Physical review. B, Condensed matter.

[48]  T. Inokuma,et al.  Analysis of SiH vibrational absorption in amorphous SiOx:H (0≤x≤2.0) alloys in terms of a charge‐transfer model , 1993 .

[49]  S. Mukhopadhyay,et al.  Low temperature silicon oxide and nitride for surface passivation of silicon solar cells , 2002 .

[50]  Mark Kerr,et al.  Recombination at the interface between silicon and stoichiometric plasma silicon nitride , 2002 .

[51]  S. Huang,et al.  Si surface passivation by SiOx : H films deposited by a low-frequency ICP for solar cell applications , 2012 .

[52]  Makoto Tanaka,et al.  Twenty-two percent efficiency HIT solar cell , 2009 .

[53]  Ahm Arno Smets,et al.  Vacancies and voids in hydrogenated amorphous silicon , 2003 .

[54]  L. Korte,et al.  Hydrogen plasma treatments for passivation of amorphous-crystalline silicon-heterojunctions on surfaces promoting epitaxy , 2013 .

[55]  W. Beyer Infrared absorption and hydrogen effusion of hydrogenated amorphous silicon-oxide films , 2000 .

[56]  R. Nemanich,et al.  Optical characterization of wide band gap amorphous semiconductors (a-Si:C:H): Effect of hydrogen dilution , 2001 .

[57]  Makoto Tanaka,et al.  Obtaining a higher Voc in HIT cells , 2005 .

[58]  K. Kamisako,et al.  Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique , 2010 .

[59]  Bram Hoex,et al.  High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon , 2006 .

[60]  R. Brendel,et al.  Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks , 2010 .

[61]  Jerome J. Cuomo,et al.  Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering , 1977 .

[62]  Gerald Earle Jellison,et al.  Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry , 1992 .

[63]  Hudong Chang,et al.  PECVD amorphous silicon suboxide films for surface passivation of silicon solar cells , 2010, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[64]  G. Lucovsky,et al.  Thermochemical stability of silicon–oxygen–carbon alloy thin films: A model system for chemical and structural relaxation at SiC–SiO2 interfaces , 1999 .

[65]  W. V. Sark,et al.  High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon , 2011 .

[66]  A. Grill,et al.  Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization , 2003 .

[67]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[68]  W. Marsden I and J , 2012 .

[69]  H. Fujiwara,et al.  Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells , 2007 .