A Buried Ridge Stripe Structure InGaAsP-Si Hybrid Laser

A buried ridge stripe (BRS) structure InGaAsP-Si hybrid laser based on selective area metal bonding (SAMB) method is demonstrated. This novel hybrid laser structure combines the SAMB method's advantage of low bonding requirements and great flexibility and the BRS lasers' low threshold, high thermal performance, and good optical field and carrier confinement. The 300-$\mu $ m-long hybrid laser has a threshold current of 14 mA and a maximum single-facet output power of 5.4 mW at room temperature, with a slope efficiency of 0.17 W/A. The laser has a characteristic temperature of 50 K, with continuous wave operation at temperature >50 °C.

[1]  Jiaoqing Pan,et al.  Hybrid InGaAsP-Si Evanescent Laser by Selective-Area Metal-Bonding Method , 2013, IEEE Photonics Technology Letters.

[2]  G. Roelkens,et al.  Hybrid III–V/Si Distributed-Feedback Laser Based on Adhesive Bonding , 2012, IEEE Photonics Technology Letters.

[3]  G. Duan,et al.  Low-Threshold Heterogeneously Integrated InP/SOI Lasers With a Double Adiabatic Taper Coupler , 2012, IEEE Photonics Technology Letters.

[4]  Yang Wang,et al.  Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material , 2012, IEEE Photonics Technology Letters.

[5]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[6]  J. Bowers,et al.  Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. , 2007, Optics express.

[7]  Liu Weili,et al.  Electrically Pumped Room-Temperature Pulsed InGaAsP-Si Hybrid Lasers Based on Metal Bonding , 2009 .

[8]  Hyundai Park,et al.  A continuous-wave hybrid AlGaInAs-silicon evanescent laser , 2006, IEEE Photonics Technology Letters.

[9]  Yang Wang,et al.  A Selective-Area Metal Bonding InGaAsP–Si Laser , 2010, IEEE Photonics Technology Letters.

[10]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[11]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[12]  Di Liang,et al.  A Distributed Bragg Reflector Silicon Evanescent Laser , 2008, IEEE Photonics Technology Letters.