Applying neural networks-based modelling to the prediction of mineralization: a case-study using the Western Australian Geochemistry (WACHEM) database

[1]  R. Zuo,et al.  Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method , 2021, Applied Geochemistry.

[2]  F. Najar,et al.  Deep learning for simultaneous measurements of pressure and temperature using arch resonators , 2021 .

[3]  E. Holden,et al.  Understanding ore-forming conditions using machine reading of text , 2021 .

[4]  F. Najar,et al.  Fluid sensing using microcantilevers: From physics-based modeling to deep learning , 2020 .

[5]  E. Grunsky,et al.  Mineral-resource prediction using advanced data analytics and machine learning of the QUEST-South stream-sediment geochemical data, southwestern British Columbia, Canada , 2020, Geochemistry: Exploration, Environment, Analysis.

[6]  Yongzhang Zhou,et al.  Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China , 2020 .

[7]  Carlos Roberto de Souza Filho,et al.  Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: Dealing with imbalanced training data , 2020 .

[8]  Omer San,et al.  Digital Twin: Values, Challenges and Enablers From a Modeling Perspective , 2019, IEEE Access.

[9]  E. Holden,et al.  Machine learning assisted geological interpretation of drillhole data: Examples from the Pilbara Region, Western Australia , 2019, Ore Geology Reviews.

[10]  Shady E. Ahmed,et al.  Data-driven recovery of hidden physics in reduced order modeling of fluid flows , 2019, Physics of Fluids.

[11]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[12]  E. Grunsky,et al.  State-of-the-art analysis of geochemical data for mineral exploration , 2019, Geochemistry: Exploration, Environment, Analysis.

[13]  W. Liu,et al.  GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China , 2019, Ore Geology Reviews.

[14]  Simon R. Arridge,et al.  Solving inverse problems using data-driven models , 2019, Acta Numerica.

[15]  Vladimir Puzyrev,et al.  Deep learning electromagnetic inversion with convolutional neural networks , 2018, Geophysical Journal International.

[16]  J. C. Ye,et al.  Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems , 2017, SIAM J. Imaging Sci..

[17]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[18]  E. Gloaguen,et al.  Machine learning as a tool for geologists , 2017 .

[19]  P. Filzmoser,et al.  Correlation Between Compositional Parts Based on Symmetric Balances , 2017, Mathematical Geosciences.

[20]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[21]  David Beamish,et al.  A machine learning approach to geochemical mapping , 2016 .

[22]  Stéphane Faure,et al.  Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks , 2016, Comput. Geosci..

[23]  V. Rodriguez-Galiano,et al.  Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines , 2015 .

[24]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[25]  Markus Neuhäuser,et al.  Effective use of Spearman's and Kendall's correlation coefficients for association between two measured traits , 2015, Animal Behaviour.

[26]  N. Oliver,et al.  Using geochemical proxies to model nuggety gold deposits: An example from Sunrise Dam, Western Australia , 2014 .

[27]  Chris Tofallis,et al.  A better measure of relative prediction accuracy for model selection and model estimation , 2014, J. Oper. Res. Soc..

[28]  Cesare Furlanello,et al.  A Comparison of MCC and CEN Error Measures in Multi-Class Prediction , 2010, PloS one.

[29]  R. Cas,et al.  District to Camp Controls on the Genesis of Komatiite-Hosted Nickel Sulfide Deposits, Agnew-Wiluna Greenstone Belt, Western Australia: Insights from the Multiple Sulfur Isotopes , 2012 .

[30]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[31]  G. Mateu-Figueras,et al.  Isometric Logratio Transformations for Compositional Data Analysis , 2003 .

[32]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[33]  P. Černý Rare-element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of Pegmatitic Deposits , 1991 .

[34]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[35]  R. Zuo,et al.  Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods , 2017, Natural Resources Research.

[36]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[37]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..