Robust Active Vibration Isolation: A Multivariable Data-Driven Approach

Abstract Active vibration isolation is essential for a large range of high precision motion systems in industry. This paper aims to develop a framework for high performance robust vibration isolation by explicitly addressing multivariable flexible dynamical behavior. A framework is proposed that connects identification and control. In addition, a new data-driven uncertainty modeling procedure is used that results in a nonconservative model error bound. Application on an active vibration isolation system confirms high performance robust vibration isolation.

[1]  Bo Wahlberg,et al.  Gain estimation for Hammerstein systems , 2006 .

[2]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[3]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[4]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[5]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[6]  Yuichi Chida,et al.  Identification and frequency shaping control of a vibration isolation system , 2004 .

[7]  Okko H. Bosgra,et al.  System identification for achieving robust performance , 2012, Autom..

[8]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[9]  Ruud J. P. Schrama Accurate identification for control: the necessity of an iterative scheme , 1992 .

[10]  Okko H. Bosgra,et al.  Multivariable feedback control design for high-precision wafer stage motion , 2002 .

[11]  P. V. D. Hof,et al.  Suboptimal feedback control by a scheme of iterative identification and control design , 1997 .

[12]  Bo Wahlberg,et al.  Analyzing iterations in identification with application to nonparametric H∞-norm estimation , 2012, Autom..

[13]  Sippe G. Douma,et al.  Relations between uncertainty structures in identification for robust control , 2005, Autom..

[14]  Jingxuan Li,et al.  Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Pramod Khargonekar,et al.  A Time-Domain Approach to Model Validation , 1992, 1992 American Control Conference.

[16]  Dean Karnopp,et al.  Active and semi-active vibration isolation , 1995 .

[17]  Bo Wahlberg,et al.  Non-parametric methods for L2-gain estimation using iterative experiments , 2010, Autom..

[18]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[19]  Douwe K. de Vries,et al.  Quantification of model uncertainty from data: input design, interpolation, and connection with robust control design specifications , 1992, 1992 American Control Conference.

[20]  Håkan Hjalmarsson,et al.  Iterative Data-Driven ${\cal H}_{\infty}$ Norm Estimation of Multivariable Systems With Application to Robust Active Vibration Isolation , 2014, IEEE Transactions on Control Systems Technology.

[21]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[22]  Douwe K. de Vries,et al.  Quantification of model uncertainty from data , 1994 .

[23]  Andrew G. Alleyne,et al.  A hybrid control strategy for active vibration isolation with electrohydraulic actuators , 2005 .