Synthesis and photovoltaic properties of dithienosilole-based copolymers

[1]  P. Ramamurthy,et al.  Random copolymers consisting of dithienylcyclopentadienone, thiophene and benzothiadiazole for bulk heterojunction solar cells , 2012 .

[2]  S. Beaupré,et al.  Effects of the Molecular Weight and the Side‐Chain Length on the Photovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers , 2012 .

[3]  B. Thompson,et al.  Influence of the Acceptor Composition on Physical Properties and Solar Cell Performance in Semi-Random Two-Acceptor Copolymers. , 2012, ACS macro letters.

[4]  E. Gondek,et al.  Influence of TiO2 nanoparticles on the photovoltaic efficiency of the ITO/PEDOT:PSS/fluorine copolymers/polythiophene: TiO2/Al architecture , 2012, Journal of Materials Science: Materials in Electronics.

[5]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[6]  Yongfang Li,et al.  Tuning the photovoltaic parameters of thiophene-linked donor–acceptor liquid crystalline copolymers for organic photovoltaics , 2012 .

[7]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[8]  Yongfang Li,et al.  Synthesis and Photovoltaic Properties of D–A Copolymers Based on Dithienosilole and Benzotriazole , 2011 .

[9]  Yong Cao,et al.  Largely Enhanced Efficiency with a PFN/Al Bilayer Cathode in High Efficiency Bulk Heterojunction Photovoltaic Cells with a Low Bandgap Polycarbazole Donor , 2011, Advanced materials.

[10]  Qingfeng Dong,et al.  Synthesis and photovoltaic properties of low‐bandgap 4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole‐based poly(heteroarylenevinylene)s , 2011 .

[11]  K. Wei,et al.  A crystalline low-bandgap polymer comprising dithienosilole and thieno(3,4-c) pyrrole-4,6-dione units for bulk heterojunction solar cells , 2011 .

[12]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[13]  Tie-hu Li,et al.  In situ 3-hexylthiophene polymerization onto surface of TiO2 based hybrid solar cells , 2010 .

[14]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[15]  T. Russell,et al.  Synthesis and photovoltaic properties of low-bandgap alternating copolymers consisting of 3-hexylthiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline derivatives , 2010 .

[16]  Bo Liu,et al.  New low bandgap dithienylbenzothiadiazole vinylene based copolymers: synthesis and photovoltaic properties. , 2010, Macromolecular rapid communications.

[17]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[18]  Hongbin Wu,et al.  Donor Polymers Containing Benzothiadiazole and Four Thiophene Rings in Their Repeating Units with Improved Photovoltaic Performance , 2009 .

[19]  A. Facchetti,et al.  Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. , 2006, Journal of the American Chemical Society.

[20]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[21]  Qingmei Zhou,et al.  Synthesis and electroluminescent properties of high-efficiency saturated red emitter based on copolymers from fluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole , 2004 .

[22]  F. So,et al.  An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells , 2012 .

[23]  Roar R. Søndergaard,et al.  Advanced materials and processes for polymer solar cell devices , 2010 .