A multi-scale model for coupling strands with shear-dependent liquid

We propose a framework for simulating the complex dynamics of strands interacting with compressible, shear-dependent liquids, such as oil paint, mud, cream, melted chocolate, and pasta sauce. Our framework contains three main components: the strands modeled as discrete rods, the bulk liquid represented as a continuum (material point method), and a reduced-dimensional flow of liquid on the surface of the strands with detailed elastoviscoplastic behavior. These three components are tightly coupled together. To enable discrete strands interacting with continuum-based liquid, we develop models that account for the volume change of the liquid as it passes through strands and the momentum exchange between the strands and the liquid. We also develop an extended constraint-based collision handling method that supports cohesion between strands. Furthermore, we present a principled method to preserve the total momentum of a strand and its surface flow, as well as an analytic plastic flow approach for Herschel-Bulkley fluid that enables stable semi-implicit integration at larger time steps. We explore a series of challenging scenarios, involving splashing, shaking, and agitating the liquid which causes the strands to stick together and become entangled.

[1]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[2]  R. D. Felice,et al.  The voidage function for fluid-particle interaction systems , 1994 .

[3]  Steve Marschner,et al.  A Survey on Hair Modeling: Styling, Simulation, and Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[4]  Stefan Luding,et al.  Towards unified drag laws for inertial flow through fibrous materials , 2012 .

[5]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[6]  I. Ionescu Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope , 2010 .

[7]  Martin Rumpf,et al.  Functional Thin Films on Surfaces , 2015, IEEE Transactions on Visualization and Computer Graphics.

[8]  Formal rheological model of acrylic waterborne paints , 2009 .

[9]  Ralph R. Martin,et al.  Multiphase SPH simulation for interactive fluids and solids , 2016, ACM Trans. Graph..

[10]  Bo Ren,et al.  Fast multiple-fluid simulation using Helmholtz free energy , 2015, ACM Trans. Graph..

[11]  R. P. Chhabra,et al.  Settling velocity of cubes in Newtonian and power law liquids , 2007 .

[12]  R. Mises Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .

[13]  F. Maio,et al.  Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids , 2015 .

[14]  Eitan Grinspun,et al.  Hybrid grains , 2018, ACM Trans. Graph..

[15]  Huamin Wang,et al.  Wetbrush: GPU-based 3D painting simulation at the bristle level , 2015, ACM Trans. Graph..

[16]  James Q. Whitman Adonis , 2017 .

[17]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[18]  Andreas Kolb,et al.  Infinite continuous adaptivity for incompressible SPH , 2017, ACM Trans. Graph..

[19]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[20]  Nadia Magnenat-Thalmann,et al.  Modeling Dynamic Hair as a Continuum , 2001, Comput. Graph. Forum.

[21]  Martin Rumpf,et al.  Functional Thin Films on Surfaces , 2017, IEEE Trans. Vis. Comput. Graph..

[22]  A. Yu,et al.  Discrete particle simulation of particle–fluid flow: model formulations and their applicability , 2010, Journal of Fluid Mechanics.

[23]  P. Cleary,et al.  Dynamics of gas–solid fluidised beds with non-spherical particle geometry , 2010 .

[24]  E. Vouga,et al.  Discrete viscous threads , 2010, SIGGRAPH 2010.

[25]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[26]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[27]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[28]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[29]  Tomoyuki Nishita,et al.  Real‐time Animation of Sand‐Water Interaction , 2008, Comput. Graph. Forum.

[30]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[31]  P. Coussot,et al.  Drag force on a sphere in steady motion through a yield- stress fluid , 2007 .

[32]  J. Kuipers,et al.  A numerical model of gas-fluidized beds , 1992 .

[33]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[34]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[35]  P. M. J. Tardy,et al.  Models for flow of non-Newtonian and complex fluids through porous media , 2002 .

[36]  Steve Marschner,et al.  Realistic hair simulation: animation and rendering , 2008, SIGGRAPH '08.

[37]  Marie-Paule Cani,et al.  Interactive animation of ocean waves , 2002, SCA '02.

[38]  T. J. Ward,et al.  Mudflow Rheology and Dynamics , 2001 .

[39]  Oliver M. O’Reilly,et al.  A Primer on the Kinematics of Discrete Elastic Rods , 2018 .

[40]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[41]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[42]  Taha Sochi,et al.  Slip at Fluid-Solid Interface , 2011, 1101.4421.

[43]  Evan Mitsoulis,et al.  Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids , 1997 .

[44]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[45]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[46]  남동석,et al.  III , 1751, Olav Audunssøn.

[47]  M. Jean,et al.  Non-smooth contact dynamics approach of cohesive materials , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  P. W. Bridgman Linear Compressions to 30,000 Kg/Cm, including Relatively Incompressible Substances , 1949 .

[49]  R. Chhabra,et al.  Drag on non-spherical particles in power law non-Newtonian media , 2006 .

[50]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[51]  E. Grinspun,et al.  Discrete elastic rods , 2008, SIGGRAPH 2008.

[52]  Huamin Wang,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Solving General Shallow Wave Equations on Surfaces , 2022 .

[53]  R de Boer,et al.  Theory of Porous Media: Highlights in Historical Development and Current State , 2000 .

[54]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[55]  R. Jackson,et al.  Fluid Mechanical Description of Fluidized Beds. The Effect of Distributor Thickness on Convective Instabilities , 1975 .

[56]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[57]  Andrew Selle,et al.  Detail preserving continuum simulation of straight hair , 2009, SIGGRAPH 2009.

[58]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[59]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[60]  Winslow H. Herschel,et al.  Konsistenzmessungen von Gummi-Benzollösungen , 1926 .

[61]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[62]  Florence Bertails-Descoubes,et al.  A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics , 2011, ACM Trans. Graph..

[63]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[64]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[65]  C. Ancey,et al.  Internal dynamics of Newtonian and viscoplastic fluid avalanches down a sloping bed , 2012 .

[66]  Xuchen Han,et al.  A material point method for thin shells with frictional contact , 2018, ACM Trans. Graph..

[67]  Steve Marschner,et al.  Strands and hair: modeling, animation, and rendering , 2007, SIGGRAPH Courses.

[68]  Aibing Yu,et al.  DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications , 2016 .

[69]  Roberto Maglione,et al.  Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling , 2006 .

[70]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[71]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[72]  I. Ionescu Viscoplastic shallow flow equations with topography , 2013 .

[73]  D. Ieşan,et al.  On the Theory of Viscoelastic Mixtures and Stability , 2008 .

[74]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[75]  G. Bartels,et al.  Contact dynamics simulations of compacting cohesive granular systems , 2002 .

[76]  Florence Bertails-Descoubes,et al.  Simulation of Drucker–Prager granular flows inside Newtonian fluids , 2017 .

[77]  Vincent Acary,et al.  A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies , 2011, TOGS.

[78]  Eitan Grinspun,et al.  Supplemental : A Multi-Scale Model for Simulating Liquid-Hair Interactions , 2017 .

[79]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[80]  P. Gennes,et al.  Shear-dependent slippage at a polymer/solid interface , 1992 .

[81]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[82]  R. Craster,et al.  Dynamics and stability of thin liquid films , 2009 .

[83]  Elmar Schömer,et al.  Interactive simulation of one-dimensional flexible parts , 2006, Symposium on Solid and Physical Modeling.

[84]  Jean-Frédéric Gerbeau,et al.  Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .

[85]  R. Chhabra,et al.  Power‐Law Fluid Flow Over a Sphere: Average Shear Rate and Drag Coefficient , 2008 .

[86]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[87]  Fathi Hassine Energy decay for a transmission coupled Euler-Bernoulli and wave equation with force and moment feedback , 2013, 1303.2838.

[88]  Ronaldo I. Borja,et al.  On the mechanical energy and effective stress in saturated and unsaturated porous continua , 2006 .

[89]  E. Mitsoulis,et al.  Capillary flow of milk chocolate , 2014 .

[90]  L. Petrovic,et al.  Volumetric Methods for Simulation and Rendering of Hair , 2006 .

[91]  Takayuki Suzuki,et al.  Mixing sauces , 2019, ACM Trans. Graph..

[92]  D. S. Drumheller,et al.  Theories of immiscible and structured mixtures , 1983 .

[93]  Kenichi Soga,et al.  Coupling of soil deformation and pore fluid flow using material point method , 2015 .

[94]  W. R. Schowalter The behavior of complex fluids at solid boundaries , 1988 .

[95]  J. Moreau,et al.  Nonsmooth Mechanics and Applications , 1989 .

[96]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[97]  Huamin Wang,et al.  Wetbrush , 2015, ACM Transactions on Graphics.

[98]  John Tsamopoulos,et al.  Creeping motion of a sphere through a Bingham plastic , 1985, Journal of Fluid Mechanics.

[99]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[100]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[101]  B. Adams,et al.  Porous flow in particle-based fluid simulations , 2008, SIGGRAPH 2008.

[102]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[103]  Chenfanfu Jiang,et al.  Silly rubber , 2019, ACM Trans. Graph..

[104]  Wei-Chin Lin,et al.  Boundary handling and porous flow for fluid-hair interactions , 2015, Comput. Graph..

[105]  Jan Bender,et al.  Direct Position‐Based Solver for Stiff Rods , 2018, Comput. Graph. Forum.

[106]  Zhi-Qiang Feng,et al.  The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms , 1998 .

[107]  Takahiro Harada,et al.  Tridiagonal Matrix Formulation for Inextensible Hair Strand Simulation , 2013, VRIPHYS.

[108]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[109]  Teodor M. Atanackovic,et al.  Theory of elasticity for scientists and engineers , 2000 .

[110]  Ken Museth A Flexible Image Processing Approach to the Surfacing of Particle-Based Fluid Animation (Invited Talk) , 2014 .

[111]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[112]  Ioan R. Ionescu,et al.  Augmented Lagrangian for shallow viscoplastic flow with topography , 2013, J. Comput. Phys..

[113]  Percy Williams Bridgman,et al.  The physics of high pressure , 1931 .

[114]  R. Chhabra,et al.  Bubbles, Drops, and Particles in Non-Newtonian Fluids , 2006 .

[115]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[116]  Elmar Schömer,et al.  Position and orientation based Cosserat rods , 2016, Symposium on Computer Animation.

[117]  Ronald Fedkiw,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[118]  Andrew K. Dickerson,et al.  Wet mammals shake at tuned frequencies to dry , 2012, Journal of The Royal Society Interface.

[119]  Ole Østerby,et al.  A two-continua approach to Eulerian simulation of water spray , 2013, ACM Trans. Graph..

[120]  Robert Bridson,et al.  Variational stokes , 2017, ACM Trans. Graph..

[121]  D. Ieşan On the theory of mixtures of elastic solids , 1994 .

[122]  F. Irgens Generalized Newtonian Fluids , 2014 .

[123]  Ronald Fedkiw,et al.  A Skinned Tetrahedral Mesh for Hair Animation and Hair-Water Interaction , 2019, IEEE Transactions on Visualization and Computer Graphics.

[124]  Pradeep K. Agarwal,et al.  Transport phenomena in multi-particle systems—II. Particle-fluid heat and mass transfer , 1988 .

[125]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[126]  Eitan Grinspun,et al.  Adaptive nonlinearity for collisions in complex rod assemblies , 2014, ACM Trans. Graph..

[127]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[128]  P. Carman Fluid flow through granular beds , 1997 .

[129]  Silviu Borac,et al.  Efficient and stable approach to elasticity and collisions for hair animation , 2015, DigiPro.

[130]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[131]  Wei-Chin Lin,et al.  Coupling Hair with Smoothed Particle Hydrodynamics Fluids , 2014, VRIPHYS.

[132]  Reiji Tsuruno,et al.  Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[133]  Gilles Daviet,et al.  Modeling and Simulating Complex Materials subject to Frictional Contact: application to Fibrous and Granular Media. (Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires) , 2016 .

[134]  A. Acharya,et al.  Flow of inelastic and viscoelastic fluids past a sphere , 1976 .

[135]  Colin Thornton,et al.  A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies , 1993 .

[136]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[137]  J. Teran,et al.  Dynamic anticrack propagation in snow , 2018, Nature Communications.

[138]  Ralph R. Martin,et al.  A unified particle system framework for multi-phase, multi-material visual simulations , 2017, ACM Trans. Graph..

[139]  M. Renaud,et al.  Transport phenomena in multi-particle systems—II. Proposed new model based on flow around submerged objects for sphere and fiber beds-transition between the capillary and particulate representations , 1997 .

[140]  Ming Gao,et al.  Animating fluid sediment mixture in particle-laden flows , 2018, ACM Trans. Graph..

[141]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[142]  Liliane Léger,et al.  Friction and slip of a simple liquid at a solid surface , 1999 .

[143]  Tae-Yong Kim,et al.  Fast Simulation of Inextensible Hair and Fur , 2012, VRIPHYS.

[144]  Mirela Ben-Chen,et al.  Real-time viscous thin films , 2018, ACM Trans. Graph..

[145]  Bharat Bhushan,et al.  Friction and wear studies of human hair and skin , 2005 .

[146]  A. Spencer Continuum Mechanics , 1967, Nature.

[147]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[148]  R. P. Chhabra,et al.  Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag , 1995 .

[149]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[150]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[151]  Adam W. Bargteil,et al.  A finite element method for animating large viscoplastic flow , 2007, ACM Trans. Graph..

[152]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[153]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[154]  Pierre Saramito,et al.  Progress in numerical simulation of yield stress fluid flows , 2017, Rheologica Acta.

[155]  S. Patkar,et al.  Wetting of Porous Solids , 2013, IEEE Transactions on Visualization and Computer Graphics.

[156]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[157]  Ioan R. Ionescu,et al.  Modeling shallow avalanche onset over complex basal topography , 2016, Adv. Comput. Math..

[158]  Tomoyuki Nishita,et al.  Wetting Effects in Hair Simulation , 2012, Comput. Graph. Forum.

[159]  Jidong Zhao,et al.  Dam-break of mixtures consisting of non-Newtonian liquids and granular particles , 2018, Powder Technology.

[160]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[161]  Ming Gao,et al.  CD-MPM , 2019, ACM Trans. Graph..

[162]  Miguel A. Otaduy,et al.  Constraint-based simulation of adhesive contact , 2010, SCA '10.

[163]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[164]  Steve Marschner,et al.  Efficient yarn-based cloth with adaptive contact linearization , 2010, SIGGRAPH 2010.

[165]  F. Bouchut,et al.  Viscoplastic modeling of granular column collapse with pressure-dependent rheology , 2015 .

[166]  M. Cocu,et al.  A consistent model coupling adhesion, friction, and unilateral contact , 1999 .

[167]  S. Davis Viscous Flow , 2021, Introductory Incompressible Fluid Mechanics.

[168]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[169]  Olga Sorkine-Hornung,et al.  Cosserat Rods with Projective Dynamics , 2018, Comput. Graph. Forum.

[170]  S. Ergun Fluid flow through packed columns , 1952 .

[171]  P. Gennes The Physics Of Foams , 1999 .