Twin beam quantum-enhanced correlated interferometry for testing fundamental physics

[1]  David E. McClelland,et al.  Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement , 2020 .

[2]  M. Korobko,et al.  Demonstration of interferometer enhancement through Einstein–Podolsky–Rosen entanglement , 2020, Nature Photonics.

[3]  Stefano Olivares,et al.  High-precision innovative sensing with continuous-variable optical states , 2018, 1806.02292.

[4]  C. Hogan,et al.  Models of exotic interferometer cross-correlations in emergent space-time , 2017, Classical and Quantum Gravity.

[5]  Alessio Avella,et al.  Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams , 2017, Scientific Reports.

[6]  S. Olivares,et al.  Noisy effects in interferometric quantum gravity tests , 2017, 1711.02358.

[7]  John Rarity,et al.  Sub-Shot-Noise Transmission Measurement Enabled by Active Feed-Forward of Heralded Single Photons , 2017 .

[8]  Tobias Gehring,et al.  Deterministic phase measurements exhibiting super-sensitivity and super-resolution , 2017, 1705.05609.

[9]  Maria Chekhova,et al.  Detection Loss Tolerant Supersensitive Phase Measurement with an SU(1,1) Interferometer. , 2017, Physical review letters.

[10]  Rainer Weiss,et al.  Interferometric constraints on quantum geometrical shear noise correlations , 2017, 1703.08503.

[11]  Chunnong Zhao,et al.  Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement , 2016, Nature Physics.

[12]  B. A. Boom,et al.  Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.

[13]  B. A. Boom,et al.  Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. , 2016, Physical review letters.

[14]  Rainer Weiss,et al.  MHz gravitational wave constraints with decameter Michelson interferometers , 2016, 1611.05560.

[15]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[16]  Roman Schnabel,et al.  Squeezed states of light and their applications in laser interferometers , 2016, 1611.03986.

[17]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[18]  J. Richardson,et al.  Statistical model of exotic rotational correlations in emergent space-time , 2016, 1607.03048.

[19]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[20]  Marco Genovese,et al.  Real applications of quantum imaging , 2016, 1601.06066.

[21]  Rainer Weiss,et al.  First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers. , 2015, Physical review letters.

[22]  I. Ruo-Berchera,et al.  One- and two-mode squeezed light in correlated interferometry , 2015 .

[23]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[24]  Augusto Smerzi,et al.  Quantum theory of phase estimation , 2014, 1411.5164.

[25]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[26]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[27]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[28]  M Genovese,et al.  Quantum light in coupled interferometers for quantum gravity tests. , 2013, Physical review letters.

[29]  Karsten Danzmann,et al.  Quantum-dense metrology , 2012, Nature Photonics.

[30]  P. Kok,et al.  Superresolving multiphoton interferences with independent light sources. , 2012, Physical review letters.

[31]  C. Hogan,et al.  Interferometers as probes of Planckian quantum geometry , 2010, 1002.4880.

[32]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[33]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[34]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010, 1004.1274.

[35]  Marco Genovese,et al.  Measurement of sub-shot-noise spatial correlations without background subtraction. , 2008, Physical review letters.

[36]  Seiji Kawamura,et al.  Search for a stochastic background of 100-MHz gravitational waves with laser interferometers. , 2008, Physical review letters.

[37]  Konrad Lehnert,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004 .

[38]  P. Kok,et al.  Gravitational decoherence , 2003, gr-qc/0306084.

[39]  O. Steuernagel Comment on "Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit" , 2003, quant-ph/0305042.

[40]  D. McClelland,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[41]  Y. Shih,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[42]  Colin P. Williams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[43]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[44]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[45]  Marlan O. Scully,et al.  Quantum optics. Experimental gravity, and measurement theory , 1983 .

[46]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .