A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut

[1]  J. Vind,et al.  Degradation of Phytate by the 6-Phytase from Hafnia alvei: A Combined Structural and Solution Study , 2013, PloS one.

[2]  G. Mayr,et al.  Tumour cells can employ extracellular Ins(1,2,3,4,5,6)P(6) and multiple inositol-polyphosphate phosphatase 1 (MINPP1) dephosphorylation to improve their proliferation. , 2013, The Biochemical journal.

[3]  S. Carding,et al.  Defining the Bacteroides Ribosomal Binding Site , 2013, Applied and Environmental Microbiology.

[4]  S. Mazmanian,et al.  Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. , 2012, Cell host & microbe.

[5]  V. Tremaroli,et al.  Functional interactions between the gut microbiota and host metabolism , 2012, Nature.

[6]  V. Monedero,et al.  Novel Phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697 , 2012, Applied and Environmental Microbiology.

[7]  A. Saiardi,et al.  Influence of Inositol Pyrophosphates on Cellular Energy Dynamics , 2011, Science.

[8]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[9]  S. Shears Faculty Opinions recommendation of Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. , 2011 .

[10]  Anutosh Chakraborty,et al.  Inositol Pyrophosphates Inhibit Akt Signaling, Thereby Regulating Insulin Sensitivity and Weight Gain , 2010, Cell.

[11]  A. Oakley The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. , 2010, Biochemical and biophysical research communications.

[12]  K. Becker,et al.  Dietary roles of phytate and phytase in human nutrition: A review , 2010 .

[13]  M. Kuehn,et al.  Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles , 2010, Microbiology and Molecular Biology Reviews.

[14]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.

[15]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[16]  J. Tanner,et al.  Crystal Structures of the histidine acid phosphatase from Francisella tularensis provide insight into substrate recognition. , 2009, Journal of molecular biology.

[17]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[18]  C. Brearley,et al.  The Arabidopsis ATP-binding Cassette Protein AtMRP5/AtABCC5 Is a High Affinity Inositol Hexakisphosphate Transporter Involved in Guard Cell Signaling and Phytate Storage* , 2009, The Journal of Biological Chemistry.

[19]  A. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[20]  F. Hoh,et al.  Structure of Debaryomyces castellii CBS 2923 phytase. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[21]  P. Keeling,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[22]  P. Lawson,et al.  Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. , 2008, International journal of systematic and evolutionary microbiology.

[23]  Robert H. Michell,et al.  Inositol derivatives: evolution and functions , 2008, Nature Reviews Molecular Cell Biology.

[24]  D. Rigden The histidine phosphatase superfamily: structure and function. , 2008, The Biochemical journal.

[25]  Y. Sanz,et al.  Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. , 2007, International journal of food microbiology.

[26]  H. Brinch-Pedersen,et al.  Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination. , 2007, Plant biotechnology journal.

[27]  P. Reynolds,et al.  Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet's "phosphate crisis". , 2006, Journal of biotechnology.

[28]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[29]  Kevin Cowtan,et al.  The Buccaneer software for automated model building , 2006 .

[30]  O. Zelder,et al.  Biotechnological production and applications of phytases , 2005, Applied Microbiology and Biotechnology.

[31]  Itay Mayrose,et al.  ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures , 2005, Nucleic Acids Res..

[32]  P. Emsley,et al.  Coot: model-building tools for molecular graphics. , 2004, Acta crystallographica. Section D, Biological crystallography.

[33]  X. Lei,et al.  Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics. , 2004, Structure.

[34]  G. Gibson,et al.  Biodiversity of human faecal bacteria isolated from phytic acid enriched chemostat fermenters. , 2004, Current issues in intestinal microbiology.

[35]  P. Berggren,et al.  Cytosolic Multiple Inositol Polyphosphate Phosphatase in the Regulation of Cytoplasmic Free Ca2+ Concentration* , 2003, Journal of Biological Chemistry.

[36]  Ivana Vucenik,et al.  Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. , 2003, The Journal of nutrition.

[37]  Gerard J Kleywegt,et al.  Pound-wise but penny-foolish: How well do micromolecules fare in macromolecular refinement? , 2003, Structure.

[38]  Zongchao Jia,et al.  Functional Insights Revealed by the Crystal Structures of Escherichia coli Glucose-1-phosphatase* , 2003, Journal of Biological Chemistry.

[39]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[40]  C. Fox,et al.  Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: a systematic review. , 2002, Complementary therapies in medicine.

[41]  Ralf Greiner,et al.  Molecular and catalytic properties of phytate‐degrading enzymes (phytases) , 2002 .

[42]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[43]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[44]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[45]  H. Chi,et al.  Targeted Deletion of Minpp1 Provides New Insight into the Activity of Multiple Inositol Polyphosphate Phosphatase In Vivo , 2000, Molecular and Cellular Biology.

[46]  Liisa Holm,et al.  DaliLite workbench for protein structure comparison , 2000, Bioinform..

[47]  L. Lebioda,et al.  Crystal structure of human prostatic acid phosphatase , 2000, The Prostate.

[48]  Zongchao Jia,et al.  Crystal structures of Escherichia coli phytase and its complex with phytate , 2000, Nature Structural Biology.

[49]  J. Fallingborg,et al.  Intraluminal pH of the human gastrointestinal tract. , 1999, Danish medical bulletin.

[50]  M. Wyss,et al.  Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2. 4 A resolution. , 1999, Journal of molecular biology.

[51]  Y. Han,et al.  Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. , 1999, Biochemical and biophysical research communications.

[52]  M. Matsuda,et al.  The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up‐regulated during endochondral ossification , 1999, FEBS letters.

[53]  P. Romano,et al.  HiPER1, a phosphatase of the endoplasmic reticulum with a role in chondrocyte maturation. , 1998, Journal of cell science.

[54]  S. Safrany,et al.  Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. , 1997, The Biochemical journal.

[55]  Clemens Broger,et al.  Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution , 1997, Nature Structural Biology.

[56]  S. Patrick,et al.  A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles. , 1996, Microbial pathogenesis.

[57]  C. Brearley,et al.  Metabolic evidence for the order of addition of individual phosphate esters in the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. , 1996, The Biochemical journal.

[58]  L. Rollins,et al.  Nucleotide sequence determination and genetic analysis of the Bacteroides plasmid, pBI143. , 1995, Plasmid.

[59]  Martina T. Sumner,et al.  Effects of aluminium on the hepatic inositol polyphosphate phosphatase. , 1995, The Biochemical journal.

[60]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[61]  G. Schneider,et al.  Three-dimensional structure of rat acid phosphatase in complex with L(+)-tartrate. , 1994, The Journal of biological chemistry.

[62]  A. H. Ullah,et al.  Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum). , 1993, Biochemical and biophysical research communications.

[63]  C. A. Hondel,et al.  Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. , 1993, Gene.

[64]  A. H. Ullah,et al.  Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. , 1993, Biochemical and biophysical research communications.

[65]  M. Feldhaus,et al.  Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron , 1992, Journal of bacteriology.

[66]  J. Putney,et al.  Purification of an inositol (1,3,4,5)-tetrakisphosphate 3-phosphatase activity from rat liver and the evaluation of its substrate specificity. , 1991, The Journal of biological chemistry.

[67]  A. Salyers,et al.  Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome , 1986, Journal of bacteriology.

[68]  J E Gander,et al.  Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. , 1972, The Journal of biological chemistry.

[69]  E. Noltmann,et al.  Glucose 6-phosphate dehydrogenase (Zwischenferment). I. Isolation of the crystalline enzyme from yeast. , 1961, The Journal of biological chemistry.

[70]  A. Leslie,et al.  The integration of macromolecular diffraction data. , 2006, Acta crystallographica. Section D, Biological crystallography.

[71]  E. Dassa,et al.  Identification of the gene appA for the acid phosphatase (pH optimum 2.5) of Escherichia coli , 2004, Molecular and General Genetics MGG.

[72]  G. Rechkemmer,et al.  Identification of an organic anion transport system in the human colon carcinoma cell line HT29 clone 19A , 2000, Pflügers Archiv.

[73]  A T Brünger,et al.  Crystallographic refinement by simulated annealing: methods and applications. , 1997, Methods in enzymology.