AWE technique in frequency domain electromagnetics

This paper presents fast radar cross section (RCS) computations using the Asymptotic Waveform Evaluation (AWE) technique in conjunction with Method of Moments (MoM) and hybrid Finite Element (FEM/MoM) implementations. In its traditional form, AWE constructs a reduced-order model of a given linear system by Taylor series expansion with respect to specific values of the system parameters (frequency, angle, etc.). However, using a Pade rational function instead of a Taylor series, the accuracy of the analysis is increased to a wider frequency range. Thus, AWE permits the prediction of the frequency response from a few frequency calculations. AWE is also extended to allow monostatic RCS pattern prediction using again a few pattern values, thus eliminating a need to resolve the system when an iterative solver is employed. To demonstrate these extensions of AWE, numerical examples of three-dimensional metallic bodies and cavity-backed apertures are considered.

[1]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[2]  E. K. Miller,et al.  Computational electromagnetics : frequency-domain method of moments , 1992 .

[3]  John L. Volakis,et al.  A hybrid FE-FMM technique for electromagnetic scattering , 1997 .

[4]  J. Volakis,et al.  Hybrid finite-element methodologies for antennas and scattering , 1997 .

[5]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[6]  Andrzej J. Strojwas,et al.  Asymptotic waveform evaluation for transient analysis of 3-D interconnect structures , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  J. Volakis,et al.  A class of hybrid finite element methods for electromagnetics: a review , 1994 .

[8]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[9]  E. K. Miller,et al.  Using model-based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics , 1991 .

[10]  J. Volakis,et al.  A hybrid finite element-boundary integral method for the analysis of cavity-backed antennas of arbitrary shape , 1994 .

[11]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[12]  John L. Volakis,et al.  AWE implementation for electromagnetic FEM analysis , 1996 .

[13]  Ramachandra Achar,et al.  Simultaneous time and frequency domain solutions of EM problems using finite element and CFH techniques , 1996 .

[14]  E. K. Miller,et al.  Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions , 1989 .

[15]  Jin-Fa Lee,et al.  Fast frequency sweep technique for the efficient analysis of dielectric waveguides , 1997 .