Gambling tests for pseudorandom number generators
暂无分享,去创建一个
[1] P. Hellekalek. Good random number generators are (not so) easy to find , 1998 .
[2] Timothy R. C. Read,et al. Multinomial goodness-of-fit tests , 1984 .
[3] J. R. Heringa,et al. Simulation of a directed random-walk model the effect of pseudo-random-number correlations , 1996, cond-mat/9612227.
[4] Timothy R. C. Read,et al. Goodness-Of-Fit Statistics for Discrete Multivariate Data , 1988 .
[5] Vattulainen,et al. Physical tests for random numbers in simulations. , 1994, Physical review letters.
[6] Makoto Matsumoto,et al. Twisted GFSR generators II , 1994, TOMC.
[7] I. Good. The serial test for sampling numbers and other tests for randomness , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] T. Ala‐Nissila,et al. Physical models as tests of randomness. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[9] Stefan Wegenkittl,et al. A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .
[10] Pierre L'Ecuyer,et al. Sparse Serial Tests of Uniformity for Random Number Generators , 1998, SIAM J. Sci. Comput..
[11] P. Butera,et al. The RANLUX Generator: Resonances in a Random Walk Test , 1998, hep-lat/9805017.
[12] Makoto Matsumoto,et al. Twisted GFSR generators , 1992, TOMC.
[13] Alan M. Ferrenberg,et al. Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.
[14] Stefan Wegenkittl,et al. Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.