P- : A Probabilistic Extension of for Probabilistic Ontologies in the Semantic Web

Ontologies play a central role in the development of the semantic web, as they provide precise definitions of shared terms in web resources. One important web ontology language is DAML+OIL; it has a formal semantics and a reasoning support through a mapping to the expressive description logic ! with the addition of inverse roles. In this paper, we present a probabilistic extension of ! , called P" # $ , to allow for dealing with probabilistic ontologies in the semantic web. The description logic P" # $ is based on the notion of probabilistic lexicographic entailment from probabilistic default reasoning. It allows to express rich probabilistic knowledge about concepts and instances, as well as default knowledge about concepts. We also present sound and complete reasoning techniques for P! , which are based on reductions to classical reasoning in " ! and to linear programming, and which show in particular that reasoning in P! is decidable.

[1]  Peter Haddawy,et al.  Anytime Deduction for Probabilistic Logic , 1994, Artif. Intell..

[2]  Ian Horrocks,et al.  Ontology Reasoning in the SHOQ(D) Description Logic , 2001, IJCAI.

[3]  Thomas Lukasiewicz,et al.  Probabilistic Default Reasoning with Conditional Constraints , 2000, Annals of Mathematics and Artificial Intelligence.

[4]  Ian Horrocks DAML+OIL: A Reason-able Web Ontology Language , 2002, EDBT.

[5]  John Yen,et al.  Generalizing Term Subsumption Languages to Fuzzy Logic , 1991, IJCAI.

[6]  Alon Y. Halevy,et al.  P-CLASSIC: A Tractable Probablistic Description Logic , 1997, AAAI/IAAI.

[7]  Moisés Goldszmidt,et al.  On the Consistency of Defeasible Databases , 1991, Artif. Intell..

[8]  Ian Horrocks,et al.  OIL: An Ontology Infrastructure for the Semantic Web , 2001, IEEE Intell. Syst..

[9]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[10]  Christopher Tresp,et al.  A Description Logic for Vague Knowledge , 1998, ECAI.

[11]  Dieter Pfoser Indexing the Trajectories of Moving Objects , 2002 .

[12]  Tim Berners-Lee,et al.  Weaving The Web: The Original Design And Ultimate Destiny of the World Wide Web , 1999 .

[13]  James A. Hendler,et al.  The semantic Web and its languages , 2000 .

[14]  Thomas Lukasiewicz,et al.  A data model and algebra for probabilistic complex values , 2001, Annals of Mathematics and Artificial Intelligence.

[15]  Umberto Straccia,et al.  A Fuzzy Description Logic , 1998, AAAI/IAAI.

[16]  Frank van Harmelen,et al.  Reviewing the design of DAML+OIL: an ontology language for the semantic web , 2002, AAAI/IAAI.

[17]  Manfred Jaeger,et al.  Probabilistic Reasoning in Terminological Logics , 1994, KR.

[18]  Thomas Lukasiewicz,et al.  Probabilistic object bases , 2001, TODS.

[19]  Jochen Heinsohn,et al.  Probabilistic Description Logics , 1994, UAI.

[20]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[21]  Didier Dubois,et al.  Constraint Propagation with Imprecise Conditional Probabilities , 1991, UAI.

[22]  Steffen Staab,et al.  OIL: The Ontology Inference Layer , 2000 .

[23]  Ian Horrocks,et al.  Practical Reasoning for Expressive Description Logics , 1999, LPAR.

[24]  Thomas Lukasiewicz,et al.  Probabilistic Deduction with Conditional Constraints over Basic Events , 2011, KR.

[25]  Thomas Lukasiewicz,et al.  Probabilistic Logic Programming under Inheritance with Overriding , 2001, UAI.