CSP dichotomy for special triads

For a fixed digraph G, the Constraint Satisfaction Problem with the template G, or CSP(G) for short, is the problem of deciding whether a given input digraph H admits a homomorphism to G. The dichotomy conjecture of Feder and Vardi states that CSP(G), for any choice of G, is solvable in polynomial time or NP-complete. This paper confirms the conjecture for a class of oriented trees called special triads. As a corollary we get the smallest known example of an oriented tree (with 33 vertices) defining an NP-complete CSP(G).

[1]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[2]  Libor Barto,et al.  Graphs, polymorphisms and the complexity of homomorphism problems , 2008, STOC '08.

[3]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[4]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2009, Theor. Comput. Sci..

[5]  Gerhard J. Woeginger,et al.  Polynomial Graph-Colorings , 1989, STACS.

[6]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[7]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[8]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[9]  Pavol Hell,et al.  On multiplicative graphs and the product conjecture , 1988, Comb..

[10]  Tomás Feder Classification of Homomorphisms to Oriented Cycles and of k-Partite Satisfiability , 2001, SIAM J. Discret. Math..

[11]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[12]  Xuding Zhu,et al.  Duality and Polynomial Testing of Tree Homomorphisms , 1996 .

[13]  Jørgen Bang-Jensen,et al.  The effect of two cycles on the complexity of colourings by directed graphs , 1989, Discret. Appl. Math..

[14]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[15]  Jaroslav Nesetril,et al.  Complexity of Tree Homomorphisms , 1996, Discret. Appl. Math..

[16]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[17]  P. Jeavons Structural Theory of Automata‚ Semigroups‚ and Universal Algebra , 2003 .

[18]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[19]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[20]  P. Jeavons,et al.  The complexity of constraint satisfaction : an algebraic approach. , 2005 .