Delaunay graphs are almost as good as complete graphs
暂无分享,去创建一个
AbstractLetS be any set ofN points in the plane and let DT(S) be the graph of the Delaunay triangulation ofS. For all pointsa andb ofS, letd(a, b) be the Euclidean distance froma tob and let DT(a, b) be the length of the shortest path in DT(S) froma tob. We show that there is a constantc (≤((1+√5)/2) π≈5.08) independent ofS andN such that
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVy0de9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaie% aacaWFebGaa8hvaiaa-HcacaWGHbGaaiilaiaadkgacaWFPaaabaGa% amizaiaa-HcacaWGHbGaaiilaiaadkgacaWFPaaaaiabgYda8iaado% gacaGGUaaaaa!4248!
$$\frac{{DT(a,b)}}{{d(a,b)}}< c.$$
[1] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[2] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .