A universality theorem for ratios of random characteristic polynomials

We consider asymptotics of ratios of random characteristic polynomials associated with orthogonal polynomial ensembles. Under some natural conditions on the measure in the definition of the orthogonal polynomial ensemble we establish a universality limit for these ratios.

[1]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[2]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[3]  Yan V. Fyodorov,et al.  An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.

[4]  B. Simon,et al.  Bulk Universality and Clock Spacing of Zeros for Ergodic Jacobi Matrices with A.C. Spectrum , 2008, 0810.3277.

[5]  Jonathan Breuer,et al.  Sine kernel asymptotics for a class of singular measures , 2010, J. Approx. Theory.

[6]  V. Totik Universality and fine zero spacing on general sets , 2009 .

[7]  Andreev,et al.  Correlators of spectral determinants in quantum chaos. , 1995, Physical review letters.

[8]  M. Vanlessen Universal Behavior for Averages of Characteristic Polynomials at the Origin of the Spectrum , 2003 .

[9]  B. Simon,et al.  Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with absolutely continuous spectrum , 2010 .

[10]  Eugene Strahov,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003 .

[11]  Yan V. Fyodorov,et al.  Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002 .

[12]  D. Lubinsky Universality limits in the bulk for arbitrary measures on compact sets , 2008 .

[13]  D. Lubinsky Some recent methods for establishing universality limits , 2009 .

[14]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[15]  C. Brezinski General orthogonal polynomials , 1980 .

[16]  B. Simon Two extensions of Lubinsky’s universality theorem , 2008 .

[17]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[18]  Characteristic Polynomials , 1957, Canadian Journal of Mathematics.

[19]  E. Strahov,et al.  Averages of Characteristic Polynomials in Random Matrix Theory , 2004 .

[20]  Elliot Findley,et al.  Universality for locally Szegö measures , 2008, J. Approx. Theory.

[21]  Edouard Brézin,et al.  Characteristic Polynomials of Random Matrices , 2000 .

[22]  W. Koenig Orthogonal polynomial ensembles in probability theory , 2004, math/0403090.

[23]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[24]  J. P. Keating,et al.  Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.

[25]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.