Structures and spectra of iodide-water clusters I-(H2O)(n=1-6): An ab initio study

To investigate the structures of I−(H2O)n=1–6, extensive ab initio calculations have been carried out. Owing to very flexible potential surfaces of the system (in particular for n=5 and 6), the lowest energy structures are characterized from various possible low-lying energy conformers. In contrast to some previously reported structures, we find a new lowest energy structure (followed by a few low-lying energy conformers) for n=5 and four nearly isoenergetic conformers for n=6. These conformers have surface and near-surface structures with the coordination number of 4. The present results provide the information of possible structures in recent profuse experiments of infrared spectra of I−(H2O)n=1–6 and charge transfer from the excited iodide ion to water molecules. Our predicted ionization potentials and OH stretching frequencies are in good agreement with the experimental data available, while only the cases of the OH frequencies for n=4 and the ionization potential for n=5 need consideration of conform...

[1]  K. S. Kim,et al.  Catalytic role of enzymes: short strong H-bond-induced partial proton shuttles and charge redistributions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. S. Choi,et al.  Origin of the high affinity and selectivity of novel receptors for NH4+ over K+: charged hydrogen bonds vs cation-pi interaction. , 2000, Organic letters.

[3]  Jin Yong Lee,et al.  Quantum mechanical probabilistic structure of the benzene-water complex , 1997 .

[4]  Trygve Helgaker,et al.  A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models , 1997 .

[5]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[6]  Jongseob Kim,et al.  Vibrational spectra and electron detachment energy of the anionic water hexamer , 2000 .

[7]  Marvin Johnson,et al.  Mass-selected “matrix isolation” infrared spectroscopy of the I−·(H2O)2 complex: making and breaking the inter-water hydrogen-bond , 1998 .

[8]  M. Johnson,et al.  Vibrational spectrum of I−(H2O) , 1996 .

[9]  Seungwan Seo,et al.  Structure of the Water Hexamer Anion , 2000 .

[10]  Kwang S. Kim,et al.  STRUCTURES, ENERGETICS, AND SPECTRA OF AQUA-SODIUM(I) : THERMODYNAMIC EFFECTS AND NONADDITIVE INTERACTIONS , 1995 .

[11]  Marvin Johnson,et al.  Vibrational Spectroscopy of the Ionic Hydrogen Bond: Fermi Resonances and Ion−Molecule Stretching Frequencies in the Binary X-·H2O (X = Cl, Br, I) Complexes via Argon Predissociation Spectroscopy , 1998 .

[12]  B. Oh,et al.  Role of catalytic residues in enzymatic mechanisms of homologous ketosteroid isomerases. , 2000, Biochemistry.

[13]  Michael J. Blandamer,et al.  Theory and applications of charge-transfer-to-solvent spectra , 1970 .

[14]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[15]  Marvin Johnson,et al.  A CLUSTER STUDY OF ANIONIC HYDRATION : SPECTROSCOPIC CHARACTERIZATION OF THE I-.WN, 1 N 3, SUPRAMOLECULAR COMPLEXES AT THE PRIMARY STEPS OF SOLVATIO N , 1999 .

[16]  Byung Jin Mhin,et al.  Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies , 1992 .

[17]  Han Myoung Lee,et al.  Comparative ab initio study of the structures, energetics and spectra of X−⋅(H2O)n=1–4 [X=F, Cl, Br, I] clusters , 2000 .

[18]  Roland Lindh,et al.  The water dimer interaction energy: Convergence to the basis set limit at the correlated level , 1997 .

[19]  Steen Brøndsted Nielsen,et al.  Spectroscopic Observation of Ion-Induced Water Dimer Dissociation in the X-·(H2O)2 (X = F, Cl, Br, I) Clusters , 1999 .

[20]  Kwang S. Kim,et al.  Molecular Cluster Bowl To Enclose a Single Electron , 1997 .

[21]  Kwang Soo Kim,et al.  NOVEL STRUCTURES FOR THE EXCESS ELECTRON STATE OF THE WATER HEXAMER AND THE INTERACTION FORCES GOVERNING THE STRUCTURES , 1997 .

[22]  Jongseob Kim,et al.  Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies , 1998 .

[23]  Gil Markovich,et al.  Photoelectron spectroscopy of Cl−, Br−, and I− solvated in water clusters , 1994 .

[24]  N. Kestner,et al.  Microscopic Study of Fluoride-Water Clusters , 1994 .

[25]  S. Xantheas,et al.  Critical Study of Fluoride−Water Interactions , 1996 .

[26]  L. Dang Characterization of water octamer, nanomer, decamer, and iodide–water interactions using molecular dynamics techniques , 1999 .

[27]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[28]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[29]  Lehr,et al.  Electron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters , 1999, Science.

[30]  T. Dunning,et al.  Structures and Energetics of F-(H2O)n, n = 1-3 Clusters from ab Initio Calculations , 1994 .

[31]  Jongseob Kim,et al.  Photoswitch and nonlinear optical switch: Theoretical studies on 1,2-bis-(3-thienyl)-ethene derivatives , 1999 .

[32]  M. Arshadi,et al.  Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions , 1970 .

[33]  M. Beyer,et al.  Generation of hydrated iodide clusters I−(H2O)n by laser vaporization, their fragmentation and reactions with HCl , 1998 .

[34]  Sotiris S. Xantheas,et al.  Quantitative Description of Hydrogen Bonding in Chloride−Water Clusters , 1996 .

[35]  John Homer,et al.  Preliminary nuclear magnetic resonance studies of the use of stray magnetic fields to increase the rate of polarization of dipolar nuclei , 1999 .

[36]  B. Oh,et al.  Crystal Structure of Δ5-3-Ketosteroid Isomerase from Pseudomonas testosteroni in Complex with Equilenin Settles the Correct Hydrogen Bonding Scheme for Transition State Stabilization* , 1999, The Journal of Biological Chemistry.

[37]  Iwao Watanabe,et al.  Vertical ionization potentials and CTTS energies for anions in water and acetonitrile , 1995 .

[38]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[39]  Jongseob Kim,et al.  Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study , 1999 .

[40]  Kwang S. Kim,et al.  Ab initio study of water hexamer anions , 1996 .

[41]  N. Kestner,et al.  Energy‐structure relationships for microscopic solvation of anions in water clusters , 1994 .

[42]  M. Berkowitz,et al.  Stabilization energies of Cl−, Br−, and I− ions in water clusters , 1993 .

[43]  G. Markovich,et al.  Photoelectron spectroscopy of iodine anion solvated in water clusters , 1991 .

[44]  Marvin Johnson,et al.  Precursor of the Iaq− charge‐transfer‐to‐solvent (CTTS) band in I−⋅(H2O)n clusters , 1996 .

[45]  S. Bradforth,et al.  Femtosecond dynamics of photodetachment of the iodide anion in solution: resonant excitation into the charge-transfer-to-solvent state , 1998 .

[46]  E. Clementi,et al.  Revisiting small clusters of water molecules , 1986 .

[47]  Han Myoung Lee,et al.  STRUCTURES AND ENERGETICS OF THE WATER HEPTAMER : COMPARISON WITH THE WATER HEXAMER AND OCTAMER , 1999 .

[48]  Han Myoung Lee,et al.  Aqua–potassium(I) complexes: Ab initio study , 1999 .

[49]  U. Boesl Anion-ZEKE Spectroscopy of the Iodine Water Cluster , 1996 .

[50]  S. Xantheas,et al.  Microscopic hydration of the fluoride anion , 1999 .

[51]  Jongseob Kim,et al.  Water dimer to pentamer with an excess electron: Ab initio study , 1999 .

[52]  Kwang Soo Kim,et al.  Ab initio study of the low-lying electronic states of Ag 3 ,A g 3 , and Ag 3 : A coupled-cluster approach , 2000 .

[53]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[54]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[55]  Mark A. Johnson,et al.  Vibrational predissociation spectra of I−·(H2O): isotopic labels and weakly bound complexes with Ar and N2 , 1997 .

[56]  N. Kestner,et al.  Microscopic solvation of anions in water clusters , 1993 .

[57]  Marvin Johnson,et al.  VIBRATIONAL SPECTROSCOPY OF SMALL BR-.(H2O)N AND I-.(H2O)N CLUSTERS : INFRARED CHARACTERIZATION OF THE IONIC HYDROGEN BOND , 1998 .

[58]  B. C. Garrett,et al.  Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations , 1993 .

[59]  F. H. Long,et al.  Femtosecond studies of electron photodetachment from an iodide ion in solution: The trapped electron , 1990 .

[60]  Marvin Johnson,et al.  An infrared study of the competition between hydrogen-bond networking and ionic solvation: Halide-dependent distortions of the water trimer in the X−⋅(H2O)3, (X=Cl, Br, I) systems , 1999 .

[61]  Shinichi Yamabe,et al.  Solvation of halide ions with water and acetonitrile in the gas phase , 1988 .

[62]  Jongseob Kim,et al.  Charge transfer to solvent (CTTS) energies of small X−(H2O)n=1–4 (X=F, Cl, Br, I) clusters: Ab initio study , 2000 .