Linearly representable codes over chain rings
暂无分享,去创建一个
[1] Claude Carlet. Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.
[2] T. Honold,et al. Weighted modules and representations of codes , 1998 .
[3] Fumikazu Tamari. On linear codes which attain the Solomon-Stiffler bound , 1984, Discret. Math..
[4] B. Artmann,et al. Hjelmslev-Ebenen mit verfeinerten Nachbarschaftsrelationen , 1969 .
[5] W. Edwin Clark,et al. Finite chain rings , 1973 .
[6] Stefan E. Schmidt,et al. Gray Isometries for Finite Chain Rings and , 1999 .
[7] Xiang-dong Hou,et al. The Reed-Muller Code R(r, m) Is Not Z4-Linear for 3 <= r <= m-2 , 1998, IEEE Trans. Inf. Theory.
[8] M. I. Boguouslavsky. Generalized Hermitian constants and kissing numbers , 1998 .
[9] CarletC.. Z2k-linear codes , 1998 .
[10] A A Nečaev,et al. FINITE PRINCIPAL IDEAL RINGS , 1973 .
[11] A. Nechaev,et al. Kerdock code in a cyclic form , 1989 .
[12] Masaaki Harada,et al. Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.
[13] T. Honold,et al. All Reed-Muller Codes Are Linearly Representable over the Ring of Dual Numbers over Z2 , 1999, IEEE Trans. Inf. Theory.
[14] David A. Drake,et al. On n-uniform Hjelmslev planes , 1970 .
[15] Thomas Honold,et al. Linear Codes over Finite Chain Rings , 1999, Electron. J. Comb..
[16] R. Raghavendran,et al. Finite associative rings , 1969 .
[17] A. A. Nechaev,et al. Linearly presentable codes , 1996 .
[18] Stefan M. Dodunekov,et al. Codes and Projective Multisets , 1998, Electron. J. Comb..
[19] B. R. McDonald. Finite Rings With Identity , 1974 .
[20] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.