Linearly representable codes over chain rings

In this paper, we consider linear codes over finite chain rings. We present a general mapping which produces codes over smaller alphabets. Under special conditions, these codes are linear over a finite field. We introduce the notion of a linearly representable code and prove that certain MacDonald codes are linearly representable. Finally, we give examples for good linear codes over finite fields obtained from special multisets in projective Hjelmslev planes.

[1]  Claude Carlet Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.

[2]  T. Honold,et al.  Weighted modules and representations of codes , 1998 .

[3]  Fumikazu Tamari On linear codes which attain the Solomon-Stiffler bound , 1984, Discret. Math..

[4]  B. Artmann,et al.  Hjelmslev-Ebenen mit verfeinerten Nachbarschaftsrelationen , 1969 .

[5]  W. Edwin Clark,et al.  Finite chain rings , 1973 .

[6]  Stefan E. Schmidt,et al.  Gray Isometries for Finite Chain Rings and , 1999 .

[7]  Xiang-dong Hou,et al.  The Reed-Muller Code R(r, m) Is Not Z4-Linear for 3 <= r <= m-2 , 1998, IEEE Trans. Inf. Theory.

[8]  M. I. Boguouslavsky Generalized Hermitian constants and kissing numbers , 1998 .

[9]  CarletC. Z2k-linear codes , 1998 .

[10]  A A Nečaev,et al.  FINITE PRINCIPAL IDEAL RINGS , 1973 .

[11]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[12]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[13]  T. Honold,et al.  All Reed-Muller Codes Are Linearly Representable over the Ring of Dual Numbers over Z2 , 1999, IEEE Trans. Inf. Theory.

[14]  David A. Drake,et al.  On n-uniform Hjelmslev planes , 1970 .

[15]  Thomas Honold,et al.  Linear Codes over Finite Chain Rings , 1999, Electron. J. Comb..

[16]  R. Raghavendran,et al.  Finite associative rings , 1969 .

[17]  A. A. Nechaev,et al.  Linearly presentable codes , 1996 .

[18]  Stefan M. Dodunekov,et al.  Codes and Projective Multisets , 1998, Electron. J. Comb..

[19]  B. R. McDonald Finite Rings With Identity , 1974 .

[20]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.