RLS-weighted Lasso for adaptive estimation of sparse signals
暂无分享,去创建一个
[1] 穂鷹 良介. Non-Linear Programming の計算法について , 1963 .
[2] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[3] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[4] K.Venkatesh Prasad,et al. Fundamentals of statistical signal processing: Estimation theory: by Steven M. KAY; Prentice Hall signal processing series; Prentice Hall; Englewood Cliffs, NJ, USA; 1993; xii + 595 pp.; $65; ISBN: 0-13-345711-7 , 1994 .
[5] Dmitry M. Malioutov,et al. Compressed sensing with sequential observations , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[6] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[7] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[8] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[9] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[10] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[11] G. Giannakis,et al. Distributed spectrum sensing for cognitive radios by exploiting sparsity , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.
[12] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .