Single conjugate adaptive optics for the ELT instrument METIS

The European Extremely Large Telescope (ELT) is a 39m large, ground-based optical and near- to mid-infrared telescope under construction in the Chilean Atacama desert. Operation is planned to start around the middle of the next decade. All first light instruments will come with wavefront sensing devices that allow control of the ELT’s intrinsic M4 and M5 wavefront correction units, thus building an adaptive optics (AO) system. To take advantage of the ELT’s optical performance, full diffraction-limited operation is required and only a high performance AO system can deliver this. Further technically challenging requirements for the AO come from the exoplanet research field, where the task to resolve the very small angular separations between host star and planet, has also to take into account the high-contrast ratio between the two objects. We present in detail the results of our simulations and their impact on high-contrast imaging in order to find the optimal wavefront sensing device for the METIS instrument. METIS is the mid-infrared imager and spectrograph for the ELT with specialised high-contrast, coronagraphic imaging capabilities, whose performance strongly depends on the AO residual wavefront errors. We examined the sky and target sample coverage of a generic wavefront sensor in two spectral regimes, visible and near-infrared, to pre-select the spectral range for the more detailed wavefront sensor type analysis. We find that the near-infrared regime is the most suitable for METIS. We then analysed the performance of Shack-Hartmann and pyramid wavefront sensors under realistic conditions at the ELT, did a balancing with our scientific requirements, and concluded that a pyramid wavefront sensor is the best choice for METIS. For this choice we additionally examined the impact of non-common path aberrations, of vibrations, and the long-term stability of the SCAO system including high-contrast imaging performance.

[1]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[2]  Changhui Rao,et al.  Measurement Error of Shack-Hartmann Wavefront Sensor , 2012 .

[3]  Remko Stuik,et al.  Designing the METIS adaptive optics system , 2012, Other Conferences.

[4]  Olivier Absil,et al.  End-to-end simulations of the E-ELT/METIS coronagraphs , 2016, Astronomical Telescopes + Instrumentation.

[5]  Remko Stuik,et al.  Designing the METIS SCAO and LTAO systems , 2016, Astronomical Telescopes + Instrumentation.

[6]  Mark P. Robbins,et al.  e2v CCD and CMOS sensors and systems designed for astronomical applications , 2016, Astronomical Telescopes + Instrumentation.

[7]  Olivier Absil,et al.  High-contrast imaging with METIS , 2016, Astronomical Telescopes + Instrumentation.

[8]  Kjetil Dohlen,et al.  Tackling down the low wind effect on SPHERE instrument , 2016, Astronomical Telescopes + Instrumentation.

[9]  Johnathan M. Bardsley,et al.  Wavefront Reconstruction Methods for Adaptive Optics Systems on Ground-Based Telescopes , 2008, SIAM J. Matrix Anal. Appl..

[10]  Laurent Jolissaint,et al.  Modeling the Chromatic Correction Error in Adaptive Optics: Application to the Case of Mid-Infrared Observations in Dry to Wet Atmospheric Conditions , 2010 .

[11]  Jean-Pierre Véran,et al.  Analytical modeling of adaptive optics: foundations of the phase spatial power spectrum approach. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Peter Bizenberger,et al.  Single conjugate adaptive optics for METIS , 2018, Astronomical Telescopes + Instrumentation.

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  K. Perraut,et al.  Dimensioning the Gravity adaptive optics wavefront sensor , 2010, Astronomical Telescopes + Instrumentation.

[15]  U. Arizona,et al.  Evidence for Misaligned Disks in the T Tauri Triple System: 10 μm Superresolution with MMTAO and Markov Chains , 2007, 0712.1595.

[16]  Eric Gaidos,et al.  AN ALL-SKY CATALOG OF BRIGHT M DWARFS , 2011, 1108.2719.

[17]  Benoit Neichel,et al.  Mitigation of vibrations in adaptive optics by minimization of closed-loop residuals. , 2013, Optics express.

[18]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[19]  A. Vigan,et al.  Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE , 2017, 1704.02987.

[20]  R. Siebenmorgen,et al.  NEAR: Low-mass Planets in α Cen with VISIR , 2017 .

[21]  Gérard Rousset,et al.  Adaptive Optics in Astronomy: Wave-front sensors , 1999 .

[22]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[23]  G. Rousset,et al.  MICADO: first light imager for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[24]  Ronny Ramlau,et al.  Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor. , 2013, Applied optics.

[25]  M. Kenworthy,et al.  FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES , 2013, 1303.0527.

[26]  Programme : E-ELT Project / WP : Programme Science Top Level Requirements for ELT-MIDIR , 2015 .

[27]  Eric Gendron,et al.  Experiments of two pupil lateral motion tracking algorithms using a Shack–Hartmann sensor , 2017 .

[28]  D. Fantinel,et al.  MAORY: adaptive optics module for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[29]  Peter Bizenberger,et al.  End to end optical design and wavefront error simulation of METIS , 2018, Astronomical Telescopes + Instrumentation.

[30]  Pierre-Yves Madec,et al.  Wavefront reconstruction with pupil fragmentation: study of a simple case , 2016, Astronomical Telescopes + Instrumentation.

[31]  Andrea Masiero,et al.  Stochastic realization approach to the efficient simulation of phase screens. , 2008 .

[32]  V. Straĭzhis,et al.  Multicolor stellar photometry , 1992 .

[33]  Johan Kosmalski,et al.  The E-ELT first light spectrograph HARMONI: capabilities and modes , 2016, Astronomical Telescopes + Instrumentation.

[34]  Remko Stuik,et al.  Status of the mid-infrared E-ELT imager and spectrograph METIS , 2016, Astronomical Telescopes + Instrumentation.

[35]  Julien H. Girard,et al.  Searching for companions down to 2 AU from β Pictoris using the L′-band AGPM coronagraph on VLT/NACO , 2013, 1311.4298.

[36]  Matthias Rosensteiner,et al.  Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[38]  Takashi Onaka,et al.  The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life , 2018 .

[39]  Robert C. Cannon,et al.  OPTIMAL BASES FOR WAVE-FRONT SIMULATION AND RECONSTRUCTION ON ANNULAR APERTURES , 1996 .

[40]  Zach DeVito,et al.  Opt , 2017 .

[41]  Mark Casali,et al.  AO WFS detector developments at ESO to prepare for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[42]  Vianak Naranjo,et al.  Near-infrared wavefront sensing for the VLT interferometer , 2008, Astronomical Telescopes + Instrumentation.

[43]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[44]  Pierre-Yves Madec Adaptive Optics in Astronomy: Control techniques , 1999 .

[45]  Robert J. Collier Program of the 1971 Spring Meeting of the Optical Society of America , 1971 .

[46]  Enrico Fedrigo,et al.  On the rejection of vibrations in adaptive optics systems , 2012, Other Conferences.

[47]  K. Dohlen,et al.  Analytical study of diffraction effects in extremely large segmented telescopes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  L. Close,et al.  FOUR DECADES OF IRC +10216: EVOLUTION OF A CARBON-RICH DUST SHELL RESOLVED AT 10 μm WITH MMT ADAPTIVE OPTICS AND MIRAC4 , , , 2011, 1111.4687.

[49]  Amokrane Berdja,et al.  Multi-instrument measurement campaign at Paranal in 2007 - Characterization of the outer scale and the seeing of the surface layer , 2010 .

[50]  Julien H. Girard,et al.  An apodizing phase plate coronagraph for VLT/NACO , 2010, Astronomical Telescopes + Instrumentation.

[51]  Olivier Guyon,et al.  Ground-based adaptive optics coronagraphic performance under closed-loop predictive control , 2017, 1712.07189.

[52]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[53]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[54]  Remko Stuik,et al.  Sensing wavefronts on resolved sources with pyramids on ELTs , 2016, Astronomical Telescopes + Instrumentation.

[55]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[56]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[57]  C. J. Skinner Flux Units and NICMOS , 1996 .

[58]  Francois Rigaut,et al.  Simulating Astronomical Adaptive Optics Systems Using Yao , 2013 .

[59]  Jean-Pierre Véran,et al.  Pyramid versus Shack-Hartmann: Trade Study Results for the NFIRAOS NGS WFS - eScholarship , 2015 .