A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube

We construct two bi-Lipschitz continuous, volume preserving maps from Euclidean space onto itself which map the unit ball onto a cylinder and onto a cube, respectively. Moreover, we characterize invariant sets of these mappings.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  L. E. J. Brouwer,et al.  Beweis der invarianz desn-dimensionalen gebiets , 1911 .

[3]  L. Brouwer Beweis der Invarianz desn-dimensionalen Gebiets , 1911 .

[4]  J. Moser On the volume elements on a manifold , 1965 .

[5]  M. Gromov SMOOTHING AND INVERSION OF DIFFERENTIAL OPERATORS , 1972 .

[6]  E. Zehnder Note on smoothing symplectic and volume preserving diffeomorphisms , 1977 .

[7]  R. Greene,et al.  Diffeomorphisms and volume-preserving embeddings of noncompact manifolds , 1979 .

[8]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[9]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .

[10]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[11]  I. Fonseca,et al.  Equilibrium configurations of defective crystals , 1992 .

[12]  Konrad Gröger W 1,p -estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators , 1992 .

[13]  Lutz Recke,et al.  Linear Elliptic Boundary Value Problems with Non – Smooth Data: Normal Solvability on Sobolev – Campanato Spaces , 2001 .

[14]  Hans-Christoph Kaiser,et al.  Interpolation for function spaces related to mixed boundary value problems , 2002 .

[15]  J. Griepentrog Linear Elliptic Boundary Value Problems with Non-smooth Data: Campanato Spaces of Functionals , 2002 .

[16]  C. Zong What is known about unit cubes , 2005 .

[17]  H. Kaiser,et al.  Classical solutions of quasilinear parabolic systems on two dimensional domains , 2005 .