A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] L. E. J. Brouwer,et al. Beweis der invarianz desn-dimensionalen gebiets , 1911 .
[3] L. Brouwer. Beweis der Invarianz desn-dimensionalen Gebiets , 1911 .
[4] J. Moser. On the volume elements on a manifold , 1965 .
[5] M. Gromov. SMOOTHING AND INVERSION OF DIFFERENTIAL OPERATORS , 1972 .
[6] E. Zehnder. Note on smoothing symplectic and volume preserving diffeomorphisms , 1977 .
[7] R. Greene,et al. Diffeomorphisms and volume-preserving embeddings of noncompact manifolds , 1979 .
[8] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[9] K. Gröger,et al. AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .
[10] J. Moser,et al. On a partial differential equation involving the Jacobian determinant , 1990 .
[11] I. Fonseca,et al. Equilibrium configurations of defective crystals , 1992 .
[12] Konrad Gröger. W 1,p -estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators , 1992 .
[13] Lutz Recke,et al. Linear Elliptic Boundary Value Problems with Non – Smooth Data: Normal Solvability on Sobolev – Campanato Spaces , 2001 .
[14] Hans-Christoph Kaiser,et al. Interpolation for function spaces related to mixed boundary value problems , 2002 .
[15] J. Griepentrog. Linear Elliptic Boundary Value Problems with Non-smooth Data: Campanato Spaces of Functionals , 2002 .
[16] C. Zong. What is known about unit cubes , 2005 .
[17] H. Kaiser,et al. Classical solutions of quasilinear parabolic systems on two dimensional domains , 2005 .