A Line Search Penalty Method for Nonlinear Optimization

Line search algorithms for nonlinear programming must include safeguards to enjoy global convergence properties. This paper describes an exact penalization approach that extends the class of problems that can be solved with line search SQP methods. In the new algorithm, the penalty parameter is adjusted at every iteration to ensure sufficient progress in linear feasibility and to promote acceptance of the step. A trust region is used to assist in the determination of the penalty parameter (but not in the step computation). It is shown that the algorithm enjoys favorable global convergence properties. Numerical experiments illustrate the behavior of the algorithm on various difficult situations.

[1]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[2]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  James V. Burke,et al.  A robust sequential quadratic programming method , 1989, Math. Program..

[5]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[6]  Sven Leyffer,et al.  User manual for filterSQP , 1998 .

[7]  Lorenz T. Biegler,et al.  Failure of global convergence for a class of interior point methods for nonlinear programming , 2000, Math. Program..

[8]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[9]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[12]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[13]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[14]  Jie Sun,et al.  Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints , 2004, Math. Program..

[15]  Nicholas I. M. Gould,et al.  An algorithm for nonlinear optimization using linear programming and equality constrained subproblems , 2004, Math. Program..

[16]  Mihai Anitescu,et al.  Global Convergence of an Elastic Mode Approach for a Class of Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[17]  Michael P. Friedlander,et al.  A two-sided relaxation scheme for Mathematical Programs with Equilibrium Constraints , 2005, SIAM J. Optim..

[18]  Lorenz T. Biegler,et al.  An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs) , 2005, SIAM J. Optim..

[19]  Nicholas I. M. Gould,et al.  On the Convergence of Successive Linear-Quadratic Programming Algorithms , 2005, SIAM J. Optim..

[20]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[21]  Donald Goldfarb,et al.  l2-PENALTY METHODS FOR NONLINEAR PROGRAMMING WITH STRONG GLOBAL CONVERGENCE PROPERTIES , 2004 .

[22]  Robert J. Vanderbei,et al.  Interior-Point Algorithms, Penalty Methods and Equilibrium Problems , 2006, Comput. Optim. Appl..

[23]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[24]  Christian Kanzow,et al.  Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications , 2008, Math. Program..

[25]  Jorge Nocedal,et al.  Steering exact penalty methods for nonlinear programming , 2008, Optim. Methods Softw..

[26]  Daniel P. Robinson,et al.  A second derivative SQP method with imposed descent , 2008 .

[27]  Nicholas I. M. Gould,et al.  An Interior-Point l 1 -Penalty Method for Nonlinear Optimization , 2010 .