The Algebra of Partial Equivalence Relations

Recent work by the author with Bonchi and Sobocinski shows how PROPs of linear relations (subspaces) can be presented by generators and equations via a “cube construction”, based on letting very simple structures interact according to PROP operations of sum, fibered sum and composition via a distributive law. This paper shows how the same construction can be used in a cartesian setting to obtain presentations by generators and equations for the PROP of equivalence relations and of partial equivalence relations.

[1]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[2]  Roberto Bruni,et al.  A Connector Algebra for P/T Nets Interactions , 2011, CONCUR.

[3]  Brendan Fong,et al.  Corelations are the prop for extraspecial commutative Frobenius monoids , 2016, 1601.02307.

[4]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[5]  S. Lack,et al.  The formal theory of monads II , 2002 .

[6]  Yves Lafont Equational Reasoning with Two-Dimensional Diagrams , 1993, Term Rewriting.

[7]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[8]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[9]  Pawel Sobocinski,et al.  Nets, Relations and Linking Diagrams , 2013, CALCO.

[10]  Roberto Bruni,et al.  On Hierarchical Graphs: Reconciling Bigraphs, Gs-monoidal Theories and Gs-graphs , 2014, Fundam. Informaticae.

[11]  Bart Jacobs,et al.  Coreflections in Algebraic Quantum Logic , 2012 .

[12]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[13]  Roberto Bruni,et al.  Some algebraic laws for spans , 2001, Electron. Notes Theor. Comput. Sci..

[14]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[15]  Ross Duncan,et al.  Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[16]  Fabio Zanasi,et al.  Interacting Hopf Algebras: the theory of linear systems , 2018, ArXiv.

[17]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[18]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[19]  S. Lane Categories for the Working Mathematician , 1971 .

[20]  Thomas Streicher,et al.  Semantics of type theory - correctness, completeness and independence results , 1991, Progress in theoretical computer science.

[21]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[22]  Kosta Dosen,et al.  Syntax for split preorders , 2009, Ann. Pure Appl. Log..

[23]  Ichiro Hasuo,et al.  Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[24]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[25]  Eugenia Cheng,et al.  Iterated distributive laws , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Nicoletta Sabadini,et al.  GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND COSPANS OF GRAPHS , 2005 .