Nanoplasmonic terahertz photoconductive switch on GaAs.

Low-temperature (LT) grown GaAs has a subpicosecond carrier response time that makes it favorable for terahertz photoconductive (PC) switching. However, this is obtained at the price of lower mobility and lower thermal conductivity than GaAs. Here we demonstrate subpicosecond carrier sweep-out and over an order of magnitude higher sensitivity in detection from a GaAs-based PC switch by using a nanoplasmonic structure. As compared to a conventional GaAs PC switch, we observe 40 times the peak-to-peak response from the nanoplasmonic structure on GaAs. The response is double that of a commercial, antireflection coated LT-GaAs PC switch.

[1]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[2]  H. Atwater,et al.  Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators. , 2011, Nano letters (Print).

[3]  Xiaobo Yin,et al.  Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales , 2011 .

[4]  M. Jarrahi,et al.  Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions , 2011 .

[5]  D. Bulgarevich,et al.  Single sub-wavelength aperture with greatly enhanced transmission , 2012 .

[6]  A. Alu,et al.  Enhanced Directivity From Subwavelength Infrared/Optical Nano-Antennas Loaded With Plasmonic Materials or Metamaterials , 2007, IEEE Transactions on Antennas and Propagation.

[7]  N. Horiuchi View from... TeraNano 2011: Terahertz nano-exploration , 2012 .

[8]  Willie J Padilla,et al.  Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. , 2007, Optics letters.

[9]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[10]  Luis Martín-Moreno,et al.  Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas. , 2011, ACS nano.

[11]  Xiang Shou,et al.  Coherent Detection of Multiband Terahertz Radiation Using a Surface Plasmon-Polariton Based Photoconductive Antenna , 2011, IEEE Transactions on Terahertz Science and Technology.

[12]  Shu-Wei Chang,et al.  Coating effect on optical resonance of plasmonic nanobowtie antenna , 2010 .

[13]  Optically-driven collapse of a plasmonic nanogap self-monitored by optical frequency mixing. , 2010, Nano letters.

[14]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[15]  P. Ginzburg,et al.  Plasmonic resonance effects for tandem receiving-transmitting nanoantennas. , 2011, Nano letters.

[16]  Saulius Marcinkevicius,et al.  GaBiAs: A material for optoelectronic terahertz devices , 2006 .

[17]  Peter Nordlander,et al.  Nanoparticle-mediated coupling of light into a nanowire. , 2007, Nano letters.

[18]  Marlan O Scully,et al.  Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. , 2010, Nano letters.

[19]  Dominique Coquillat,et al.  Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. , 2012, Nano letters.

[20]  P. Jepsen,et al.  Optical waveguide mode control by nanoslit-enhanced terahertz field. , 2012, Optics letters.

[21]  W. Cai,et al.  Nanoscale optics: Plasmonics gets transformed. , 2010, Nature nanotechnology.

[22]  H. Bernien,et al.  Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.

[23]  B. Sartorius,et al.  Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers. , 2010, Optics express.

[24]  G. Si,et al.  Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer , 2012 .

[25]  Takuo Tanemura,et al.  Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. , 2011, Nano letters.

[26]  F. Smith,et al.  375‐GHz‐bandwidth photoconductive detector , 1991 .

[27]  P. Berini,et al.  Long-range surface plasmons on ultrathin membranes. , 2007, Nano letters.

[28]  B. Heshmat,et al.  Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission. , 2011, Optics express.

[29]  Uriel Levy,et al.  Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. , 2009, Nano letters.

[30]  Andrea Alù,et al.  Transmission resonances in plasmonic metallic gratings , 2011 .

[31]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[32]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[33]  Sergey I. Bozhevolnyi,et al.  Extraordinary optical transmission enhanced by nanofocusing. , 2010, Nano letters.

[34]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[35]  D. F. Ogletree,et al.  Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[36]  N. Melosh,et al.  Probing molecular junctions using surface plasmon resonance spectroscopy. , 2006, Nano letters.

[37]  U. Chettiar,et al.  Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells. , 2012, Optics express.

[38]  Zhaoguang Pang,et al.  Random laser based on waveguided plasmonic gain channels. , 2011, Nano letters.

[39]  J. Aizpurua,et al.  Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. , 2010, Nano letters.

[40]  Federico Capasso,et al.  Beam engineering of quantum cascade lasers , 2012 .

[41]  Merrielle Spain,et al.  Tunable color filters based on metal-insulator-metal resonators. , 2009, Nano letters.

[42]  P. Munroe,et al.  Damage in III–V Compounds during Focused Ion Beam Milling , 2005, Microscopy and Microanalysis.

[43]  Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance , 2010 .

[44]  Y. Hsin,et al.  Temperature dependence of electron saturation velocity in GaAs measured in InGaP/GaAs HBT using DC and AC approaches , 2005 .

[45]  F. G. Sun,et al.  Measurement of free‐space terahertz pulses via long‐lifetime photoconductors , 1995 .

[46]  Concentration of terahertz radiation through a conically tapered aperture. , 2010, Optics express.

[47]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[48]  P. Mandal,et al.  Plasmon-phonon coupling in charged n-type CdSe quantum dots: A THz time-domain spectroscopic study. , 2007, Nano letters.

[49]  R. Spolenak,et al.  Dimensional control of brittle nanoplatelets. A statistical analysis of a thin film cracking approach. , 2006, Nano letters.

[50]  Mircea Dragoman,et al.  Terahertz fields and applications , 2004 .

[51]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[52]  Jong Chul Ye,et al.  Enhancement of terahertz pulse emission by optical nanoantenna. , 2012, ACS nano.

[53]  U. Chettiar,et al.  An invisible metal–semiconductor photodetector , 2012, Nature Photonics.

[54]  E. Brown,et al.  Coherent millimeter‐wave generation by heterodyne conversion in low‐temperature‐grown GaAs photoconductors , 1993 .

[55]  Sanjay Krishna,et al.  A Surface Plasmon Enhanced Infrared Photodetector Based on Inas Quantum Dots , 2022 .

[56]  R. Gordon,et al.  Surface plasmon microcavity for resonant transmission through a slit in a gold film. , 2008, Optics express.

[57]  Ajay Nahata,et al.  Transmission resonances through aperiodic arrays of subwavelength apertures , 2007, Nature.