Well-spread sequences and edge-labellings with constant Hamilton-weight

A sequence (a i ) of integers is well-spread if the sums a i +a j , for i<j , are all different. For a fixed positive integer r , let W r (N) denote the maximum integer n for which there exists a well-spread sequence 0≤ a 1 <…<a n ≤ N with a i ≡ a j (b mod r) for all i , j . We give a new proof that W r (N)<(N/r) 1/2 +O((N/r) 1/4 ) ; our approach improves a bound of Ruzsa [ Acta.Arith. 65 (1993), 259--283] by decreasing the implicit constant, essentially from 4 to √ 3 . We apply this result to verify a conjecture of Jones et al. from [ Discuss. Math. Graph Theory 23 (2003), 287--307]. The application concerns the growth-rate of the maximum label Λ(n) in a `most-efficient' metric, injective edge-labelling of K n with the property that every Hamilton cycle has the same length; we prove that 2n 2 -O(n 3/2 )<Λ(n)<2n 2 +O(n 61/40 ) .

[1]  Bojan Mohar,et al.  On constant-weight TSP-tours , 2003, Discuss. Math. Graph Theory.

[2]  B. Linström,et al.  An inequality for B2-sequences , 1969 .

[3]  András Sárközy,et al.  Unsolved problems in number theory , 2001, Period. Math. Hung..

[4]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[5]  N. J. A. Sloane,et al.  On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.

[6]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[7]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[8]  P. Ebdos,et al.  ON A PROBLEM OF SIDON IN ADDITIVE NUMBER THEORY, AND ON SOME RELATED PROBLEMS , 2002 .

[9]  Imre Z. Ruzsa,et al.  Sumsets of Sidon sets , 1996 .

[10]  R. C. Bose,et al.  Theorems in the additive theory of numbers , 1962 .

[11]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[12]  László Babai,et al.  Sidon Sets in Groups and Induced Subgraphs of Cayley Graphs , 1985, Eur. J. Comb..

[13]  J. Pintz,et al.  The Difference Between Consecutive Primes, II , 2001 .

[14]  Abraham P. Punnen,et al.  Weighted graphs with all Hamiltonian cycles of the same length , 2003, Discret. Math..

[15]  Imre Z. Ruzsa,et al.  An Infinite Sidon Sequence , 1998 .

[16]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[17]  S. Sidon Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen , 1932 .