Well-spread sequences and edge-labellings with constant Hamilton-weight
暂无分享,去创建一个
[1] Bojan Mohar,et al. On constant-weight TSP-tours , 2003, Discuss. Math. Graph Theory.
[2] B. Linström,et al. An inequality for B2-sequences , 1969 .
[3] András Sárközy,et al. Unsolved problems in number theory , 2001, Period. Math. Hung..
[4] P. Erdös,et al. On a problem of sidon in additive number theory, and on some related problems , 1941 .
[5] N. J. A. Sloane,et al. On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.
[6] János Komlós,et al. A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..
[7] Imre Z. Ruzsa,et al. Solving a linear equation in a set of integers I , 1993 .
[8] P. Ebdos,et al. ON A PROBLEM OF SIDON IN ADDITIVE NUMBER THEORY, AND ON SOME RELATED PROBLEMS , 2002 .
[9] Imre Z. Ruzsa,et al. Sumsets of Sidon sets , 1996 .
[10] R. C. Bose,et al. Theorems in the additive theory of numbers , 1962 .
[11] J. Singer. A theorem in finite projective geometry and some applications to number theory , 1938 .
[12] László Babai,et al. Sidon Sets in Groups and Induced Subgraphs of Cayley Graphs , 1985, Eur. J. Comb..
[13] J. Pintz,et al. The Difference Between Consecutive Primes, II , 2001 .
[14] Abraham P. Punnen,et al. Weighted graphs with all Hamiltonian cycles of the same length , 2003, Discret. Math..
[15] Imre Z. Ruzsa,et al. An Infinite Sidon Sequence , 1998 .
[16] Kathryn Fraughnaugh,et al. Introduction to graph theory , 1973, Mathematical Gazette.
[17] S. Sidon. Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen , 1932 .