The chaotic dynamics of jamming

Free-flowing granular media can quickly become jammed above a critical density. Nonlinear dynamical systems analysis now suggests that jamming arises from the interaction between the density of instabilities and the propagation of disturbances throughout the material.

[1]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[2]  Schofield,et al.  Three-dimensional direct imaging of structural relaxation near the colloidal glass transition , 2000, Science.

[3]  R. Behringer,et al.  KINEMATICS OF A TWO-DIMENSIONAL GRANULAR COUETTE EXPERIMENT AT THE TRANSITION TO SHEARING , 1999 .

[4]  Konstantin Mischaikow,et al.  Topology of force networks in compressed granular media , 2012 .

[5]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[6]  G. Biroli,et al.  Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass , 2007, 0706.1531.

[7]  Sidney R. Nagel,et al.  Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids , 2004, cond-mat/0409687.

[8]  Andrea J. Liu,et al.  Nonlinear dynamics: Jamming is not just cool any more , 1998, Nature.

[9]  S. Schöllmann Simulation of a two-dimensional shear cell , 1999 .

[10]  C. O’Hern,et al.  Repulsive contact interactions make jammed particulate systems inherently nonharmonic. , 2011, Physical review letters.

[11]  I. Procaccia,et al.  Locality and nonlocality in elastoplastic responses of amorphous solids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Christian Veje,et al.  Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition , 1999 .

[13]  R. Behringer,et al.  Dynamics of the contacts reveals Widom lines for jamming , 2012 .

[14]  Andrea J. Liu,et al.  The Jamming Transition and the Marginally Jammed Solid , 2010 .

[15]  Andrea J. Liu,et al.  Jamming at zero temperature and zero applied stress: the epitome of disorder. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  L. Berthier,et al.  Superdiffusive, heterogeneous, and collective particle motion near the fluid-solid transition in athermal disordered materials , 2010, 1001.0914.

[17]  E Altshuler,et al.  Avalanche prediction in a self-organized pile of beads. , 2008, Physical review letters.

[18]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[19]  A. Lemaître,et al.  Rate-dependent avalanche size in athermally sheared amorphous solids. , 2009, Physical review letters.

[20]  Leonardo E. Silbert,et al.  Jamming of frictional spheres and random loose packing , 2010, 1108.0012.

[21]  Andrea J Liu,et al.  Random packings of frictionless particles. , 2001, Physical review letters.

[22]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[23]  Ludovic Berthier,et al.  Dynamic criticality at the jamming transition. , 2012, The Journal of chemical physics.

[24]  R. Behringer,et al.  Jamming by shear , 2011, Nature.

[25]  Stefan Luding,et al.  Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell , 2000 .

[26]  A. J. Liu,et al.  Vibrational modes identify soft spots in a sheared disordered packing. , 2010, Physical review letters.

[27]  J. Troadec,et al.  Compacity and mean coordination number of dense packings of hard discs , 1984 .

[28]  Sidney R. Nagel,et al.  Anharmonic and quasi-localized vibrations in jammed solids—Modes for mechanical failure , 2010 .

[29]  Massimo Cencini,et al.  Transport properties of chaotic and non-chaotic many particle systems , 2007, 0712.0467.

[30]  S. Teitel,et al.  Critical scaling of shearing rheology at the jamming transition of soft-core frictionless disks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.