Solving mixed classical and fractional partial differential equations using short–memory principle and approximate inverses

The efficient numerical solution of the large linear systems of fractional differential equations is considered here. The key tool used is the short–memory principle. The latter ensures the decay of the entries of the inverse of the discretized operator, whose inverses are approximated here by a sequence of sparse matrices. On this ground, we propose to solve the underlying linear systems by these approximations or by iterative solvers using sequence of preconditioners based on the above mentioned inverses.

[1]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[2]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[3]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[4]  Daniele Bertaccini,et al.  Sparse approximate inverse preconditioners on high performance GPU platforms , 2016, Comput. Math. Appl..

[5]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[6]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..

[7]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[8]  Marina Popolizio,et al.  A matrix approach for partial differential equations with Riesz space fractional derivatives , 2013 .

[9]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[10]  Daniela di Serafino,et al.  MLD2P4: A Package of Parallel Algebraic Multilevel Domain Decomposition Preconditioners in Fortran 95 , 2010, TOMS.

[11]  Daniele Bertaccini,et al.  Interpolating preconditioners for the solution of sequence of linear systems , 2016, Comput. Math. Appl..

[12]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[13]  Robert Bridson,et al.  Multiresolution Approximate Inverse Preconditioners , 2001, SIAM J. Sci. Comput..

[14]  Michele Colajanni,et al.  PSBLAS: a library for parallel linear algebra computation on sparse matrices , 2000, TOMS.

[15]  J. G. Wendel Note on the Gamma Function , 1948 .

[16]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[17]  C. Canuto,et al.  On the decay of the inverse of matrices that are sum of Kronecker products , 2013, 1312.6631.

[18]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[19]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[20]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[21]  Jianyu Pan,et al.  Approximate Inverse Circulant-plus-Diagonal Preconditioners for Toeplitz-plus-Diagonal Matrices , 2010, SIAM J. Sci. Comput..

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[24]  C. Lubich Discretized fractional calculus , 1986 .

[25]  Daniele Bertaccini,et al.  Nonsymmetric Preconditioner Updates in Newton-Krylov Methods for Nonlinear Systems , 2011, SIAM J. Sci. Comput..

[26]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[27]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[28]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[29]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[30]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[31]  V. Lampret Estimating the sequence of real binomial coefficients. , 2006 .

[32]  Wei-Pai Tang,et al.  Refining an approximate inverse , 2000 .

[33]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[34]  Blas M Vinagre Jara,et al.  Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Thomas Strohmer,et al.  Localization of Matrix Factorizations , 2013, Found. Comput. Math..

[36]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[37]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..