Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes

[1]  Mark W. Verbrugge,et al.  Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics , 2012 .

[2]  Klaus Hackl,et al.  The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries , 2012 .

[3]  Partha P Mukherjee,et al.  Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation. , 2012, Physical chemistry chemical physics : PCCP.

[4]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[5]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses , 2011 .

[6]  V. Shenoy,et al.  Location- and Orientation-Dependent Progressive Crack Propagation in Cylindrical Graphite Electrode Particles , 2011 .

[7]  Jiannong Fang,et al.  A 3D distinct lattice spring model for elasticity and dynamic failure , 2011 .

[8]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[9]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[10]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[11]  S. Zapperi,et al.  Fracture roughness in three-dimensional beam lattice systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[13]  Yang-Tse Cheng,et al.  Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications , 2010 .

[14]  Yang-Tse Cheng,et al.  Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress , 2010 .

[15]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[16]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[17]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[18]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[19]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[20]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[21]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[22]  Qinjun Kang,et al.  Modeling fractal electrodes for Li-ion batteries , 2009 .

[23]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[24]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[25]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[26]  Partha P. Mukherjee,et al.  Direct Numerical Simulation Modeling of Bilayer Cathode Catalyst Layers in Polymer Electrolyte Fuel Cells , 2007 .

[27]  Ralph E. White,et al.  Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model , 2007 .

[28]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[29]  Chaoyang Wang,et al.  Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles , 2006 .

[30]  Partha P. Mukherjee,et al.  Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer , 2006 .

[31]  Shengyi Liu An analytical solution to Li/Li+ insertion into a porous electrode , 2006 .

[32]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[33]  V. Subramanian,et al.  Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .

[34]  S. Zapperi,et al.  Statistical properties of fracture in a random spring model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[36]  Martin Ostoja-Starzewski,et al.  Lattice models in micromechanics , 2002 .

[37]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[38]  P. Novák,et al.  Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries , 2001 .

[39]  Ralph E. White,et al.  New Separation of Variables Method for Composite Electrodes With Galvanostatic Boundary Conditions , 2001 .

[40]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[41]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[42]  M. Doyle,et al.  Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process , 1997 .

[43]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[44]  E. Fuller,et al.  Microstructural Mechanics Model of Anisotropic‐Thermal‐Expansion‐Induced Microcracking , 1994 .

[45]  Bikas K. Chakrabarti,et al.  Non-Linearity and Breakdown in Soft Condensed Matter , 1994 .

[46]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[47]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[48]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[49]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[50]  S. Redner,et al.  A random fuse model for breaking processes , 1985 .

[51]  M. Inagaki,et al.  Energy Principle of Elastic-Plastic Fracture and Its Application to the Fracture Mechanics of a Polycrystalline Graphite , 1983 .

[52]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .