Phase change dynamics and 2-dimensional 4-bit memory in Ge2Sb2Te5 via telecom-band encoding

As modern computing gets continuously pushed up against the von Neumann Bottleneck -- limiting the ultimate speeds for data transfer and computation -- new computing methods are needed in order to bypass this issue and keep our computer's evolution moving forward, such as hybrid computing with an optical co-processor, all-optical computing, or photonic neuromorphic computing. In any of these protocols, we require an optical memory: either a multilevel/accumulator memory, or a computational memory. Here, we propose and demonstrate a 2-dimensional 4-bit fully optical non-volatile memory using Ge2Sb2Te5 (GST) phase change materials, with encoding via a 1550 nm laser. Using the telecom-band laser, we are able to reach deeper into the material due to the low-loss nature of GST at this wavelength range, hence increasing the number of optical write/read levels compared to previous demonstrations, while simultaneously staying within acceptable read/write energies. We verify our design and experimental results via rigorous numerical simulations based on finite element and nucleation theory, and we successfully write and read a string of characters using direct hexadecimal encoding.

[1]  Byoung-Joon Kim,et al.  Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field , 2009 .

[2]  Cheolkyu Kim,et al.  Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices , 2009 .

[3]  Haralampos Pozidis,et al.  Programming algorithms for multilevel phase-change memory , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[4]  Christoforos E. Kozyrakis,et al.  TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory , 2017, ASPLOS.

[5]  Yang Wang,et al.  Comparison of optical and electrical transient response during nanosecond laser pulse-induced phase transition of Ge2Sb2Te5 thin films , 2011 .

[6]  Gary A. Sevison,et al.  Improving the performance of Ge2Sb2Te5 materials via nickel doping: Towards RF-compatible phase-change devices , 2018, Applied Physics Letters.

[7]  C. Peng,et al.  Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media , 1997 .

[8]  Haralampos Pozidis,et al.  Multilevel phase-change memory , 2010, 2010 17th IEEE International Conference on Electronics, Circuits and Systems.

[9]  Ferdinando Bedeschi,et al.  A Multi-Level-Cell Bipolar-Selected Phase-Change Memory , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[10]  H. Wong,et al.  Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals , 2013 .

[11]  M Mansuripur,et al.  Crystallization and amorphization studies of a Ge(2)Sb(2.3)Te(5) thin-film sample under pulsed laser irradiation. , 2000, Applied optics.

[12]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[13]  H.-S Philip Wong,et al.  Electrothermal Modeling and Design Strategies for Multibit Phase-Change Memory , 2012, IEEE Transactions on Electron Devices.

[14]  J. Mathews,et al.  All-optical switching via four-wave mixing Bragg scattering in a silicon platform , 2016, 1611.03937.

[15]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[16]  C. Hagleitner,et al.  Device, circuit and system-level analysis of noise in multi-bit phase-change memory , 2010, 2010 International Electron Devices Meeting.

[17]  Simone Raoux,et al.  Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe , 2014 .

[18]  E. Wright,et al.  Dynamic theory of crystallization in Ge2Sb2.3Te5 phase-change optical recording media. , 2000, Applied optics.

[19]  Tao Li,et al.  Mercury: A fast and energy-efficient multi-level cell based Phase Change Memory system , 2011, 2011 IEEE 17th International Symposium on High Performance Computer Architecture.

[20]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[21]  Grain Boundaries, Phase Impurities, and Anisotropic Thermal Conduction in Phase-Change Memory , 2011, IEEE Electron Device Letters.

[22]  V. Pruneri,et al.  Decoupled Optical Response and Structural Transition in Phase Change Materials , 2014 .

[23]  Y. Yeo,et al.  Multi-level phase change memory devices with Ge2Sb2Te5 layers separated by a thermal insulating Ta2O5 barrier layer , 2011 .

[24]  Matthias Wuttig,et al.  Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials. , 2016, Physical review letters.

[25]  E. Pop,et al.  GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform , 2018 .

[26]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[27]  A. Lindenberg,et al.  Ultrafast sub-threshold photo-induced response in crystalline and amorphous GeSbTe thin films , 2013 .

[28]  Failure Mechanisms of Ge 2 Sb 2 Te 5 Phase Change Memory Cell , 2013 .

[29]  A. L. Karchevsky A frequency-domain analytical solution of Maxwell's equations , 2007 .

[30]  Laser-induced phase transition processes of amorphous Ge2Sb2Te5 films , 2019, Optik.

[31]  Sang Chul Lee,et al.  Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films , 2011 .

[32]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[33]  M. Asheghi,et al.  Thermoelectric Characterization and Power Generation Using a Silicon-on-Insulator Substrate , 2012, Journal of Microelectromechanical Systems.

[34]  Yang Wang,et al.  Different crystallization processes of as-deposited amorphous Ge2Sb2Te5 films on nano- and picosecond single laser pulse irradiation , 2012 .

[35]  Imad Agha,et al.  A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators , 2019, Applied Sciences.

[36]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[37]  Mario J. Paniccia,et al.  Interconnects: Wiring electronics with light , 2007 .

[38]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[39]  Randolph Kirchain,et al.  A roadmap for nanophotonics , 2007 .

[40]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[41]  Pierre Ambs,et al.  Optical Computing: A 60-Year Adventure , 2010 .

[42]  Lei Liu,et al.  Two-dimensional multibit optoelectronic memory with broadband spectrum distinction , 2018, Nature Communications.

[43]  C. David Wright,et al.  Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell , 2018, Optica.

[44]  Nathan Youngblood,et al.  Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials , 2018, Advanced materials.