Use of γ-irradiation to reduce Clostridium perfringens on ready-to-eat bovine tripe.

[1]  R. E. Hungate,et al.  The Rumen and Its Microbes , 2013 .

[2]  J. Novak,et al.  A convenient method to detect potentially lethal heat-induced damage to DNA in Clostridium perfringens , 2005 .

[3]  R. Beumer,et al.  Behavior of Clostridium perfringens at low temperatures. , 2004, International journal of food microbiology.

[4]  A. Moir Bacterial spore germination and protein mobility. , 2003, Trends in microbiology.

[5]  Lihan Huang,et al.  Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock , 2003 .

[6]  R. Beumer,et al.  Optimizing sporulation of Clostridium perfringens. , 2002, Journal of food protection.

[7]  J. McKee,et al.  The microbiological quality of beef tripe using different processing techniques. , 2002, Meat science.

[8]  J. Novak,et al.  Clostridium perfringens: hazards in new generation foods , 2002 .

[9]  A. Moir,et al.  Transcriptional responses during outgrowth of Bacillus subtilis endospores. , 2001, Microbiology.

[10]  H. Melosh,et al.  Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments , 2000, Microbiology and Molecular Biology Reviews.

[11]  W. Nicholson,et al.  Artificial and Solar UV Radiation Induces Strand Breaks and Cyclobutane Pyrimidine Dimers in Bacillus subtilis Spore DNA , 2000, Applied and Environmental Microbiology.

[12]  P. Setlow,et al.  Isolation and Characterization of Mutations inBacillus subtilis That Allow Spore Germination in the Novel Germinant d-Alanine , 1999, Journal of bacteriology.

[13]  L. McCaig,et al.  Food-related illness and death in the United States. , 1999, Emerging infectious diseases.

[14]  T. C. Beaman,et al.  Heat shock affects permeability and resistance of Bacillus stearothermophilus spores , 1988, Applied and environmental microbiology.

[15]  S Kozuka,et al.  Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles , 1985, Journal of bacteriology.

[16]  H. Klingbeil,et al.  Microflora of Edible Offal with Particular Reference to Salmonella. , 1984, Journal of food protection.

[17]  G. Gould,et al.  The Bacterial Spore , 1984 .

[18]  J. Staden,et al.  Observations on the effect of different methods of processing on the bacterial contaminants of bovine and ovine tripe , 1978 .

[19]  C. Duncan,et al.  Spore coat protein and enterotoxin synthesis in Clostridium perfringens , 1977, Journal of bacteriology.

[20]  R. Flowers,et al.  Spore membrane(s) as the site of damage within heated Clostridium perfringens spores , 1976, Journal of bacteriology.

[21]  N. Grecz,et al.  Production of spore spheroplasts of Clostridium botulinum and DNA extraction for density gradient centrifugation. , 1974, Canadian journal of microbiology.

[22]  M. Doyle,et al.  Physical methods of food preservation. , 2007 .

[23]  T. Civera,et al.  Vacuum packaging of bovine tripe. Microbial contamination and indole content , 1994 .

[24]  G. Gould,et al.  Fundamental and applied aspects of bacterial spores , 1994 .

[25]  Grahame W. Gould,et al.  Mechanisms of action of food preservation procedures. , 1989 .

[26]  D Göktan,et al.  The effect of vacuum packaging and gaseous atmosphere on microbial growth in tripe. , 1988, Meat science.

[27]  T. R. Dutson,et al.  Advances in meat research , 1985 .

[28]  R. Clarke,et al.  Microbial ecology of the gut , 1977 .

[29]  G. Gould,et al.  Activation of spores of Bacillus cereus by gamma-radiation. , 1968, Journal of general microbiology.

[30]  C. Duncan,et al.  Improved medium for sporulation of Clostridium perfringens. , 1968, Applied microbiology.

[31]  R. E. Hungate CHAPTER IV – Ruminant Functions Related to Rumen Microbial Activity , 1966 .