On essential self-adjointness of singular Sturm-Liouville operators

Considering singular Sturm–Liouville differential expressions of the type τα = −(d/dx)x (d/dx) + q(x), x ∈ (0, b), α ∈ R, we employ some Sturm comparison-type results in the spirit of Kurss to derive criteria for τα to be in the limit point and limit circle case at x = 0. More precisely, if α ∈ R and for 0 < x sufficiently small, q(x) ≥ [(3/4) − (α/2)]x, or, if α ∈ (−∞, 2) and there exist N ∈ N, and ε > 0 such that for 0 < x sufficiently small, q(x) ≥ [(3/4) − (α/2)]x − (1/2)(2 − α)x N ∑

[1]  F. Gesztesy,et al.  On self-adjoint boundary conditions for singular Sturm–Liouville operators bounded from below , 2019, Journal of Differential Equations.

[2]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[3]  George B. Arfken,et al.  Sturm-Liouville Theory , 2012 .

[4]  E. Coddington,et al.  Spectral theory of ordinary differential operators , 1975 .

[5]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[6]  Anton Zettl,et al.  Singular Sturm-Liouville problems : the Friedrichs extension and comparison of eigenvalues , 1992 .

[7]  H. Kalf A Characterization of the Friedrichs Extension of Sturm‐Liouville Operators , 1978 .

[8]  F. Rellich,et al.  Eigenwerttheorie gewohnlicher Differentialgleichungen , 1976 .

[9]  Friedrich Sauvigny,et al.  Linear Operators in Hilbert Spaces , 2012 .

[10]  H. Kalf On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential , 1972 .

[11]  J. Weidmann Lineare Operatoren in Hilberträumen , 2000 .

[12]  U. Schmincke Essential selfadjointness of a Schrödinger operator with strongly singular potential , 1972 .

[13]  U. Jarecki Differentialgleichungen , 2020, Dubbel Taschenbuch für den Maschinenbau 1: Grundlagen und Tabellen.

[14]  D. Pearson,et al.  Quantum scattering and spectral theory , 1988 .

[15]  H. Kalf,et al.  Strongly singular potentials and essential self-adjointness of singular elliptic operators in C0∞(Rn⧹{0}) , 1972 .

[16]  Fritz Gesztesy,et al.  A Survey of Some Norm Inequalities , 2021, Complex Analysis and Operator Theory.

[17]  A limit-point criterion for nonoscillatory Sturm-Liouville differential operators , 1967 .

[18]  J. Barceló,et al.  Characterization of Sobolev spaces on the sphere , 2019, Journal of Mathematical Analysis and Applications.

[19]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[20]  R. Rosenberger A New Characterization of the Friedrichs Extension of Semibounded Sturm‐Liouville Operators , 1985 .

[21]  J. Behrndt,et al.  Boundary Value Problems, Weyl Functions, and Differential Operators , 2020, Monographs in Mathematics.

[22]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[23]  H. Kalf,et al.  On the spectral theory of schrödinger and dirac operators with strongly singular potentials , 1975 .

[24]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[25]  L. Zanelli,et al.  Mathematical methods of Quantum Mechanics , 2017 .

[26]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .