Capturing and Reusing Empirical Visualization Knowledge

The context-aware discovery and ranking of visualization components is a crucial part of an adaptive, automated information visualization system. Since existing approaches allow for using expert knowledge formalized a priori, insights gained during the visualization processes by the users, e. g., suitable data-visualization combinations, are mostly neglected. In this paper, we propose a concept to capture and formalize these insights. Furthermore, we enhance a context-aware ranking approach using this knowledge by applying the well-known collaborative filtering. Thus, we are able to employ ratings also if data-visualization combinations are new for the current user.

[1]  Wenfei Fan,et al.  Keys for XML , 2001, WWW '01.

[2]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[3]  Akrivi Katifori,et al.  A Context-Based Adaptive Visualization Environment , 2006, Tenth International Conference on Information Visualisation (IV'06).

[4]  George Karypis,et al.  A Comprehensive Survey of Neighborhood-based Recommendation Methods , 2011, Recommender Systems Handbook.

[5]  Min Chen,et al.  Knowledge-Assisted Visualization , 2010 .

[6]  Lior Rokach,et al.  Introduction to Recommender Systems Handbook , 2011, Recommender Systems Handbook.

[7]  Klaus Meißner,et al.  A Semantics-Based, End-User-Centered Information Visualization Process for Semantic Web Data , 2013 .

[8]  William Ribarsky,et al.  Defining and applying knowledge conversion processes to a visual analytics system , 2009, Comput. Graph..

[9]  Jan Polowinski,et al.  VISO: a shared, formal knowledge base as a foundation for semi-automatic infovis systems , 2013, CHI Extended Abstracts.

[10]  David M. Nichols,et al.  Implicit Rating and Filtering , 1998 .

[11]  Arjan Kuijper,et al.  A Reference Model for Adaptive Visualization Systems , 2011, HCI.

[12]  Zhen Wen,et al.  Behavior-driven visualization recommendation , 2009, IUI.

[13]  Carsten Radeck,et al.  Semantics-based discovery, selection and mediation for presentation-oriented mashups , 2011, Mashups '11.

[14]  Stefan Pietschmann,et al.  Context-aware Recommendation of Visualization Components , 2012 .