Comparison of FCM and FISODATA

In fuzzy clustering, the fuzzy c-means (FCM) clustering algorithm is the best known and used method. An interesting extension of FCM is the fuzzy ISODATA (FISODATA) algorithm; it updates cluster number during the algorithm. That’s why we can have more or less clusters than the initialization step. It’s the power of the fuzzy ISODATA algorithm comparing to FCM. The aim of this paper is to compare FCM and FISODATA results.

[1]  Aly A. Farag,et al.  On Cluster Validity Indexes in Fuzzy and Hard Clustering Algorithms for Image Segmentation , 2007, 2007 IEEE International Conference on Image Processing.

[2]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[3]  I. Kuo-LungWu Parameter Selections of Fuzzy C-Means Based on Robust Analysis , 2012 .

[4]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[5]  Laurence S. Dooley,et al.  Review on Fuzzy Clustering Algorithms , 2008 .

[6]  Shubhangi C. Tirpude,et al.  Fuzzy C-Means Clustering For Content Based Image Retrieval System , 2011 .

[7]  Spyros G. Tzafestas,et al.  Image Segmentation via Iterative Fuzzy Clustering Based on Local Space-Frequency Multi-Feature Coherence Criteria , 2000, J. Intell. Robotic Syst..

[8]  D. Vanisri,et al.  An Enhanced Fuzzy Possibilistic C-means with Repulsion and Cluster Validity Index , 2011 .

[9]  Béchir el Ayeb,et al.  Image Segmentation Based on Adaptive Fuzzy-C-Means Clustering , 2010, 2010 20th International Conference on Pattern Recognition.

[10]  Chongxun Zheng,et al.  Fuzzy c-means clustering algorithm with a novel penalty term for image segmentation , 2005 .

[11]  Mohamed Fadhel Saad,et al.  Modified Fuzzy Possibilistic C-means , 2009 .

[12]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[13]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[14]  Zhanting Yuan,et al.  Fuzzy Clustering Algorithm based on Factor Analysis and its Application to Mail Filtering , 2009, J. Softw..