Minimal entropy of states emerging from noisy quantum channels
暂无分享,去创建一个
[1] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[2] S. V. Enk,et al. Experimental Proposal for Achieving Superadditive Communication Capacities with a Binary Quantum Alphabet , 1999, quant-ph/9903039.
[3] P. Algoet,et al. ONE-TO-ONE PARAMETRIZATION OF QUANTUM CHANNELS , 1999 .
[4] Peter W. Shor,et al. Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.
[5] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[6] A. Holevo. Coding Theorems for Quantum Channels , 1999 .
[7] C. Fuchs. Nonorthogonal Quantum States Maximize Classical Information Capacity , 1997, quant-ph/9703043.
[8] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[9] B. C. Carlson,et al. EIGENVALUES OF DENSITY MATRICES , 1961 .
[10] D. Petz. Monotone metrics on matrix spaces , 1996 .
[11] Chiara Macchiavello,et al. Quantum entanglement and classical communication through a depolarizing channel , 1999, quant-ph/9903033.
[12] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[13] M. Ruskai,et al. Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.
[14] John A. Smolin,et al. Entanglement-Enhanced Classical Communication on a Noisy Quantum Channel , 1996, quant-ph/9611006.
[15] Alexander Semenovich Holevo,et al. Quantum coding theorems , 1998 .
[16] M. Reed,et al. Methods of Mathematical Physics , 1980 .
[17] A. J. Coleman. THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .
[18] Ashish V. Thapliyal,et al. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.
[19] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[20] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[21] Caves,et al. Ensemble-dependent bounds for accessible information in quantum mechanics. , 1994, Physical review letters.