The structure of molecular clouds and the universality of the clump mass function
暂无分享,去创建一个
[1] J. Kauffmann,et al. Structural Analysis of Molecular Clouds: Dendrograms , 2008, 0802.2944.
[2] Jonathan P. Williams,et al. Accepted for Publication in the Astrophysical Journal on the Evolution of the Dense Core Mass Function , 1998 .
[3] A. Goodman,et al. CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.
[4] M. Lombardi,et al. The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure , 2007, 0709.1164.
[5] N. Peretto,et al. The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.
[6] E. Bergin,et al. Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.
[7] M. Norman,et al. Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.
[8] M. Lombardi,et al. The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.
[9] D. Ward-Thompson,et al. A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.
[10] A. Goodman,et al. Estimating the Column Density in Molecular Clouds with Far-Infrared and Submillimeter Emission Maps , 2006, astro-ph/0602286.
[11] J. Bally,et al. Large-Area Mapping at 850 μm. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud , 2005, astro-ph/0512382.
[12] C. Brunt,et al. The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.
[13] C. Brunt,et al. Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence , 2003, astro-ph/0311461.
[14] S. Boldyrev,et al. Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes , 2002, astro-ph/0207568.
[15] P. Kroupa. The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.
[16] J. Ballesteros-Paredes,et al. Physical versus Observational Properties of Clouds in Turbulent Molecular Cloud Models , 2001, astro-ph/0108136.
[17] Ralf Klessen,et al. (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .
[18] James M. Stone,et al. Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.
[19] D. Johnstone,et al. Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .
[20] P. Padoan,et al. The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.
[21] P. Myers. Growth of an Initial Mass Function Cluster in a Turbulent Dense Core. , 2000, The Astrophysical journal.
[22] R. Klessen,et al. The Formation of Stellar Clusters: Gaussian Cloud Conditions. I. , 1999, astro-ph/9904090.
[23] A. Boss,et al. Protostars and Planets VI , 2000 .
[24] C. Gammie,et al. On the Turbulent Velocity Dispersion in Molecular Clouds , 1999 .
[25] J. Scalo,et al. Clouds as Turbulent Density Fluctuations: Implications for Pressure Confinement and Spectral Line Data Interpretation , 1998, astro-ph/9806059.
[26] Leonardo Testi,et al. Star Formation in Clusters: A Survey of Compact Millimeter-Wave Sources in the Serpens Core , 1998, astro-ph/9809323.
[27] A. Goodman,et al. Coherence in Dense Cores. II. The Transition to Coherence , 1998 .
[28] R. Klessen,et al. Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1997, astro-ph/9712013.
[29] M. Bate,et al. Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .
[30] B. Jones,et al. The universality of the stellar initial mass function , 1997 .
[31] B. Elmegreen. A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.
[32] T. Passot,et al. MHD Turbulence, Cloud Formation, and Star Formation in the ISM (Invited paper) , 1996, astro-ph/9602004.
[33] I. Bonnell,et al. Modelling accretion in protobinary systems , 1995, astro-ph/9510149.
[34] P. Padoan. Supersonic turbulent flows and the fragmentation of a cold medium , 1995, astro-ph/9506002.
[35] J. Dubinski,et al. Turbulence in Molecular Clouds , 1995, astro-ph/9501032.
[36] Leo Blitz,et al. DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .
[37] B. Elmegreen. Star Formation at Compressed Interfaces in Turbulent Self-gravitating Clouds , 1993 .
[38] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[39] W. Benz. Smooth Particle Hydrodynamics: A Review , 1990 .
[40] Louis A. Medard. Physical and chemical properties , 1989 .
[41] B. Shustov. Protostars and Planets II , 1987 .
[42] Joseph John Monaghan,et al. On the fragmentation of differentially rotating clouds , 1983 .
[43] R. Fleck. Star formation in turbulent molecular clouds: the initial stellar mass function , 1982 .
[44] Milton L. Lee. 1 – Physical and Chemical Properties , 1981 .
[45] R. Larson. Turbulence and star formation in molecular clouds , 1980 .