The structure of molecular clouds and the universality of the clump mass function

Using a smoothed particle hydrodynamics (SPH) simulation of a star-forming region in a molecular cloud, we show that the emergence of a clump mass function (CMF) resembling the stellar initial mass function (IMF) is a ubiquitous feature of molecular cloud structure, but caution against its overinterpretation. We employ three different techniques to extract the clumps in this study. In the first two, we interpolate the SPH particle data to two- and three-dimensional grids before performing the clump-find, using position-position (PP) and position-position-velocity (PPV) information, respectively. In the last technique, the clump-finding is performed on the SPH data directly, making use of the full three-dimensional position information. Although the CMF is typically similar to that observed in regions of nearby star formation, the individual clumps and their masses are found to be unreliable since they depend strongly on the parameters and the method of the clump-finding. In particular, we find that the resolution and orientation of the data make a significant difference to the resulting properties of the identified clumps in the PP and PPV cases. We conclude that making comparisons between a CMF and the stellar IMF should be done with caution, since the definition of a clump boundary, and hence the number of clumps and their properties, is arbitrary in the extraction method. This is especially true if molecular clouds are truly scale free.

[1]  J. Kauffmann,et al.  Structural Analysis of Molecular Clouds: Dendrograms , 2008, 0802.2944.

[2]  Jonathan P. Williams,et al.  Accepted for Publication in the Astrophysical Journal on the Evolution of the Dense Core Mass Function , 1998 .

[3]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[4]  M. Lombardi,et al.  The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure , 2007, 0709.1164.

[5]  N. Peretto,et al.  The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.

[6]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[7]  M. Norman,et al.  Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.

[8]  M. Lombardi,et al.  The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.

[9]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[10]  A. Goodman,et al.  Estimating the Column Density in Molecular Clouds with Far-Infrared and Submillimeter Emission Maps , 2006, astro-ph/0602286.

[11]  J. Bally,et al.  Large-Area Mapping at 850 μm. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud , 2005, astro-ph/0512382.

[12]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[13]  C. Brunt,et al.  Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence , 2003, astro-ph/0311461.

[14]  S. Boldyrev,et al.  Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes , 2002, astro-ph/0207568.

[15]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[16]  J. Ballesteros-Paredes,et al.  Physical versus Observational Properties of Clouds in Turbulent Molecular Cloud Models , 2001, astro-ph/0108136.

[17]  Ralf Klessen,et al.  (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .

[18]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[19]  D. Johnstone,et al.  Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .

[20]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[21]  P. Myers Growth of an Initial Mass Function Cluster in a Turbulent Dense Core. , 2000, The Astrophysical journal.

[22]  R. Klessen,et al.  The Formation of Stellar Clusters: Gaussian Cloud Conditions. I. , 1999, astro-ph/9904090.

[23]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[24]  C. Gammie,et al.  On the Turbulent Velocity Dispersion in Molecular Clouds , 1999 .

[25]  J. Scalo,et al.  Clouds as Turbulent Density Fluctuations: Implications for Pressure Confinement and Spectral Line Data Interpretation , 1998, astro-ph/9806059.

[26]  Leonardo Testi,et al.  Star Formation in Clusters: A Survey of Compact Millimeter-Wave Sources in the Serpens Core , 1998, astro-ph/9809323.

[27]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[28]  R. Klessen,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1997, astro-ph/9712013.

[29]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[30]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[31]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[32]  T. Passot,et al.  MHD Turbulence, Cloud Formation, and Star Formation in the ISM (Invited paper) , 1996, astro-ph/9602004.

[33]  I. Bonnell,et al.  Modelling accretion in protobinary systems , 1995, astro-ph/9510149.

[34]  P. Padoan Supersonic turbulent flows and the fragmentation of a cold medium , 1995, astro-ph/9506002.

[35]  J. Dubinski,et al.  Turbulence in Molecular Clouds , 1995, astro-ph/9501032.

[36]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[37]  B. Elmegreen Star Formation at Compressed Interfaces in Turbulent Self-gravitating Clouds , 1993 .

[38]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[39]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[40]  Louis A. Medard Physical and chemical properties , 1989 .

[41]  B. Shustov Protostars and Planets II , 1987 .

[42]  Joseph John Monaghan,et al.  On the fragmentation of differentially rotating clouds , 1983 .

[43]  R. Fleck Star formation in turbulent molecular clouds: the initial stellar mass function , 1982 .

[44]  Milton L. Lee 1 – Physical and Chemical Properties , 1981 .

[45]  R. Larson Turbulence and star formation in molecular clouds , 1980 .