A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits

As a contribution to the celebration of the year 2014, declared by the United Nations to be ‘The International Year of Crystallography’, the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X‐rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation.

[1]  Wladek Minor,et al.  Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining , 2014, IUCrJ.

[2]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[3]  Richard Giegé,et al.  A historical perspective on protein crystallization from 1840 to the present day , 2013, The FEBS journal.

[4]  A. Authier Early Days of X-ray Crystallography , 2013 .

[5]  Wayne A. Hendrickson,et al.  Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data , 2013, Acta crystallographica. Section D, Biological crystallography.

[6]  M. Levitt,et al.  The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. , 2013, Structure.

[7]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[8]  Andrzej M. Brzozowski,et al.  How insulin engages its primary binding site on the insulin receptor , 2013, Nature.

[9]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[10]  P. Pámies De novo protein crystal , 2012 .

[11]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[12]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[13]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[14]  Randy J. Read,et al.  Improved molecular replacement by density- and energy-guided protein structure optimization , 2011, Nature.

[15]  Zbigniew Dauter,et al.  High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55 ņ , 2011, Nucleic acids research.

[16]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[17]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[18]  Sergey V. Melnikov,et al.  The structure of the eukaryotic ribosome at 3.0 angstrom resolution. , 2011 .

[19]  A. Balasubramanian,et al.  Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. , 2010, Journal of molecular biology.

[20]  Zbigniew Dauter,et al.  Impact of synchrotron radiation on macromolecular crystallography: a personal view , 2010, Journal of synchrotron radiation.

[21]  J. Abelson From Molecular Biology to Geology: A Surprising Trajectory , 2009, The Journal of Biological Chemistry.

[22]  J. Karle Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology , 2009 .

[23]  Rebecca A Robbins,et al.  Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance , 2009, Proceedings of the National Academy of Sciences.

[24]  F. Maia,et al.  Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction , 2008, Quarterly Reviews of Biophysics.

[25]  Report on a project on three-dimensional imaging of the biological cell by single-particle X-ray diffraction. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[26]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[27]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[28]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[29]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[30]  J. Holton,et al.  Structural basis for aminoglycoside inhibition of bacterial ribosome recycling , 2007, Nature Structural &Molecular Biology.

[31]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[32]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[33]  Aaron Klug,et al.  The discovery of the DNA double helix. , 2004, Journal of molecular biology.

[34]  N. O. Manning,et al.  The protein data bank , 1999, Genetica.

[35]  R. Huber,et al.  The basic trypsin inhibitor of bovine pancreas , 1970, Naturwissenschaften.

[36]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[37]  Youxing Jiang,et al.  Crystal structure and mechanism of a calcium-gated potassium channel , 2002, Nature.

[38]  R. Hull Tomato Bushy Stunt Virus , 2002 .

[39]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[40]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[41]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[42]  A. Edison Linus Pauling and the planar peptide bond , 2001, Nature Structural Biology.

[43]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[44]  L. F. Kress The Basic Trypsin Inhibitor of Bovine Pancreas , 2001 .

[45]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[46]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[47]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[48]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[49]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[50]  U Heinemann,et al.  An integrated approach to structural genomics. , 2000, Progress in biophysics and molecular biology.

[51]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[52]  Thomas Lengauer,et al.  Structure Based Drug Design , 2005 .

[53]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[54]  A. Sali,et al.  Structural genomics: beyond the Human Genome Project , 1999, Nature Genetics.

[55]  G. Montelione,et al.  A banner year for membranes , 1999, Nature Structural Biology.

[56]  J. Newman,et al.  Class‐directed structure determination: Foundation for a protein structure initiative , 1998, Protein science : a publication of the Protein Society.

[57]  Sung-Hou Kim Shining a light on structural genomics , 1998, Nature Structural Biology.

[58]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[59]  T Gaasterland,et al.  Structural genomics taking shape. , 1998, Trends in genetics : TIG.

[60]  Max F. Perutz,et al.  Science Is Not a Quiet Life: Unravelling the Atomic Mechanism of Haemoglobin , 1998 .

[61]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[62]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[63]  J. Kendrew Protein crystallography and computing: recollections of the 50s , 1996 .

[64]  A. Klug,et al.  The crystal structure of an AII-RNAhammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage , 1995, Cell.

[65]  J Deisenhofer,et al.  Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. , 1989, Journal of molecular biology.

[66]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[67]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[68]  Steven M. Gallo,et al.  SnB: crystal structure determination via shake-and-bake , 1994 .

[69]  How my interest in proteins developed , 1993, Protein science : a publication of the Protein Society.

[70]  A. Wlodawer,et al.  Structure-based inhibitors of HIV-1 protease. , 1993, Annual review of biochemistry.

[71]  Mark A. Murcko,et al.  Use of structural information in drug design , 1992, Current Biology.

[72]  L. Pauling 5 – How I Became Interested in the Chemical Bond: A Reminiscence , 1992 .

[73]  Seth A. Darst,et al.  Three-dimensional structure of yeast RNA polymerase II at 16 Å resolution , 1991, Cell.

[74]  Y. Satow,et al.  Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. , 1990, Science.

[75]  T. Blundell,et al.  X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. , 1990, Journal of molecular biology.

[76]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[77]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[78]  A Wlodawer,et al.  Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. , 1989, Science.

[79]  B Chevrier,et al.  Crystallographic structure of an RNA helix: [U(UA)6A]2. , 1989, Journal of molecular biology.

[80]  R. Kornberg,et al.  Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography , 1989, Nature.

[81]  M. Jaskólski,et al.  Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. , 1989, Science.

[82]  A. Yonath,et al.  Cryocrystallography of ribosomal particles. , 1989, Acta crystallographica. Section B, Structural science.

[83]  David Rowlands,et al.  The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution , 1989, Nature.

[84]  A Wlodawer,et al.  Molecular modeling of the HIV-1 protease and its substrate binding site. , 1989, Science.

[85]  Maria Miller,et al.  Crystal structure of a retroviral protease proves relationship to aspartic protease family , 1989, Nature.

[86]  K. Hodgson,et al.  Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic "blue" copper protein from cucumbers. , 1988, Science.

[87]  T L Blundell,et al.  The structure of 2Zn pig insulin crystals at 1.5 A resolution. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[88]  H. Hope Cryocrystallography of biological macromolecules: a generally applicable method. , 1988, Acta crystallographica. Section B, Structural science.

[89]  A. Yonath,et al.  Single crystals of large ribosomal particles from Halobacterium marismortui diffract to 6 A. , 1987, Journal of molecular biology.

[90]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[91]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[92]  D. Filman,et al.  Three-dimensional structure of poliovirus at 2.9 A resolution. , 1985, Science.

[93]  John E. Johnson,et al.  Structure of a human common cold virus and functional relationship to other picornaviruses , 1985, Nature.

[94]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[95]  J. Risler,et al.  Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction , 1985, FEBS letters.

[96]  F M Richards,et al.  Optical matching of physical models and electron density maps: early developments. , 1985, Methods in enzymology.

[97]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[98]  T A Jones,et al.  Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 A resolution. , 1984, Journal of molecular biology.

[99]  R. Huber,et al.  Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. , 1984, Journal of molecular biology.

[100]  B. L. Sibanda,et al.  Three-dimensional structure, specificity and catalytic mechanism of renin , 1983, Nature.

[101]  V. Erdmann,et al.  Several crystal forms of the Bacillus stearothermophilus 50 S ribosomal particles , 1983, FEBS letters.

[102]  M. Perutz Structural crystallography in chemistry and biology: benchmark papers in physical chemistry and chemical physics. Vol. 4 edited by J. P. Glusker , 1983 .

[103]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[104]  A Yonath,et al.  Crystallization of Escherichia coli ribosomes , 1982, FEBS letters.

[105]  H. Michel Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. , 1982, Journal of molecular biology.

[106]  R. Dickerson,et al.  The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA , 1982, Nature.

[107]  S. A. Salisbury,et al.  Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C) , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[108]  R. Dickerson,et al.  Conformation and dynamics in a Z-DNA tetramer. , 1981, Journal of molecular biology.

[109]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[110]  Richard E. Dickerson,et al.  Crystal structure analysis of a complete turn of B-DNA , 1980, Nature.

[111]  John E. Johnson,et al.  Structure of southern bean mosaic virus at 2.8 Å resolution , 1980, Nature.

[112]  Wayne A. Hendrickson,et al.  A restrained-parameter thermal-factor refinement procedure , 1980 .

[113]  D. Oesterhelt,et al.  Three-dimensional crystals of membrane proteins: bacteriorhodopsin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Jacques H. van Boom,et al.  Molecular structure of a left-handed double helical DNA fragment at atomic resolution , 1979, Nature.

[115]  S. Harrison,et al.  Tomato bushy stunt virus at 2.9 Å resolution , 1978, Nature.

[116]  R. Staden,et al.  Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits , 1978, Nature.

[117]  R. Dickerson,et al.  A salt-induced conformational change in crystals of the synthetic DNA tetramer d(CpGpCpG). , 1978, Journal of molecular biology.

[118]  A. Schechter,et al.  Therapeutic agents for sickle cell disease , 1978, Nature.

[119]  J. Jenkins,et al.  Crystallographic studies on the activity of glycogen phosphorylase b , 1978, Nature.

[120]  T. A. Jones,et al.  A graphics model building and refinement system for macromolecules , 1978 .

[121]  A. Fedorov,et al.  [X-ray structural analysis of pepsin. V. Conformation of the main chain of the enzyme]. , 1978, Molekuliarnaia biologiia.

[122]  S. A. Salisbury,et al.  DNA double helical fragment at atomic resolution , 1978, Nature.

[123]  George M. Church,et al.  A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters , 1977 .

[124]  K. Holmes,et al.  Structure of RNA and RNA binding site in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams , 1977, Nature.

[125]  B Rubin,et al.  Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. , 1977, Science.

[126]  U. W. Arndt,et al.  The Rotation method in crystallography : data collection from macromolecular crystals , 1977 .

[127]  R. Fletterick,et al.  Structure of glycogen phosphorylase a at 3.0 A resolution and its ligand binding sites at 6 A. , 1976, The Journal of biological chemistry.

[128]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. , 1976, Journal of molecular biology.

[129]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. , 1976, Journal of molecular biology.

[130]  G. Schulz,et al.  Comparison of protein crystal diffraction patterns and absolute intensities from synchrotron and conventional x-ray sources. , 1976, Journal of molecular biology.

[131]  P J Goodford,et al.  COMPOUNDS DESIGNED TO FIT A SITE OF KNOWN STRUCTURE IN HUMAN HAEMOGLOBIN , 1976, British journal of pharmacology.

[132]  R. Fletterick,et al.  Low-resolution structure of the glycogen phosphorylase a monomer and comparison with phosphorylase b , 1976 .

[133]  David M. Blow,et al.  Structure and mechanism of chymotrypsin , 1976 .

[134]  M. Sundaralingam,et al.  Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation. , 1976, Nucleic acids research.

[135]  T. Blundell,et al.  Receptor-binding region of insulin , 1976, Nature.

[136]  S. Kim,et al.  Idealized atomic coordinates of yeast phenylalanine transfer RNA. , 1976, Biochemical and biophysical research communications.

[137]  A Wlodawer,et al.  Applications of synchrotron radiation to protein crystallography: preliminary results. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[138]  N. Madsen,et al.  The crystal structure of phosphorylase b at 6 Å resolution , 1974 .

[139]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[140]  The molecular structure of yeast phenylalanine transfer RNA in monoclinic crystals. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[141]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[142]  A. Rich,et al.  Three-dimensional structure of yeast phenylalanine transfer RNA at 3. 0Å resolution , 1974, Nature.

[143]  Hans Eklund,et al.  Structure of Liver Alcohol Dehydrogenase at 2.9-Å Resolution , 1973 .

[144]  K. D. Watenpaugh,et al.  Refinement of the model of a protein: rubredoxin at 1.5 Å resolution , 1973 .

[145]  W. Lipscomb,et al.  Aspartate transcarbamoylase from Escherichia coli: electron density at 5.5 A resolution. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Alexander Rich,et al.  Three-Dimensional Structure of Yeast Phenylalanine Transfer RNA: Folding of the Polynucleotide Chain , 1973, Science.

[147]  Leonard J. Banaszak,et al.  Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 Å resolution , 1972 .

[148]  M. Sundaralingam,et al.  X-ray diffraction study of a new crystal form of yeast phenylalanine tRNA. , 1972, Nature: New biology.

[149]  J. Drenth,et al.  Subtilisin Novo. The three-dimensional structure and its comparison with subtilisin BPN'. , 1972, European journal of biochemistry.

[150]  M. Karplus,et al.  A mathematical model for structure-function relationships in hemoglobin. , 1972, Biochemical and biophysical research communications.

[151]  L. Sieker,et al.  The Structure of a Non-Heme Iron Protein: Rubredoxin at 1.5 Å Resolution , 1972 .

[152]  Michael G. Rossmann,et al.  The molecular replacement method : a collection of papers on the use of non-crystallographic symmetry , 1972 .

[153]  L. Sieker,et al.  The structure of a non-heme iron protein: rubredoxin at 1.5 Angstrom resolution. , 1972, Cold Spring Harbor symposia on quantitative biology.

[154]  M. Levitt,et al.  A refinement of the structure of lysozyme. , 1971, The Biochemical journal.

[155]  R. Diamond A real-space refinement procedure for proteins , 1971 .

[156]  P. Main,et al.  The application of phase relationships to complex structures. III. The optimum use of phase relationships , 1971 .

[157]  K. Holmes,et al.  Synchrotron Radiation as a Source for X-ray Diffraction , 1971, Nature.

[158]  M Barbieri,et al.  Isolation of ribosome microcrystals. , 1970, Journal of molecular biology.

[159]  M. Rossmann,et al.  Structure of Lactate Dehydrogenase at 2.8 Å Resolution , 1970, Nature.

[160]  E. Baker,et al.  Structure of Rhombohedral 2 Zinc Insulin Crystals , 1969, Nature.

[161]  J. Wells,et al.  The effect of EDTA and Mg2+ on the infectivity and structure of southern bean mosaic virus. , 1969, Virology.

[162]  J. Kraut,et al.  Structure of Subtilisin BPN′ at 2.5 Å Resolution , 1969, Nature.

[163]  J. Drenth,et al.  Structure of Papain , 1968, Nature.

[164]  G. Reeke,et al.  The structure of carboxypeptidase a, vi. Some results at 2.0-a resolution, and the complex with glycyl-tyrosine at 2.8-a resolution. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[165]  F M Richards,et al.  The structure of ribonuclease-S at 3.5 A resolution. , 1967, The Journal of biological chemistry.

[166]  B. Strandberg,et al.  Crystal structure of human erythrocyte carbonic anhydrase C. 3. Molecular structure of the enzyme and of one enzyme-inhibitor complex at 5-5 A resolution. , 1967, Journal of molecular biology.

[167]  B. Matthews,et al.  Three-dimensional Structure of Tosyl-α-chymotrypsin , 1967, Nature.

[168]  S. Shall,et al.  Structure of Ribonuclease , 1967, Nature.

[169]  T. Steitz,et al.  The structure of carboxypeptidase AIII. Molecular structure at 6 resolution , 1966 .

[170]  L. Johnson,et al.  Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis At 6 Å Resolution , 1965, Nature.

[171]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[172]  M. Perutz THE HEMOGLOBIN MOLECULE. , 1964, Scientific American.

[173]  D. Blow,et al.  Determination of phases by the conditions of non-crystallographic symmetry , 1963 .

[174]  A. North,et al.  Structure Of Lysozyme: A Fourier Map of the Electron Density at 6 Å Resolution obtained by X-ray Diffraction , 1962, Nature.

[175]  C. Anfinsen The tertiary structure of ribonuclease. , 1962, Brookhaven symposia in biology.

[176]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[177]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[178]  Michael G. Rossmann,et al.  The position of anomalous scatterers in protein crystals , 1961 .

[179]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[180]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[181]  M. Perutz,et al.  Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. , 1960, Nature.

[182]  F. Crick,et al.  The treatment of errors in the isomorphous replacement method , 1959 .

[183]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[184]  K. Trueblood,et al.  The structure of vitamin B12. I. An outline of the crystallographic investigation of vitamin B12 , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[185]  M. Perutz,et al.  The structure of haemoglobin - IV. Sign determination by the isomorphous replacement method , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[186]  H. R. Wilson,et al.  Molecular structure of deoxypentose nucleic acids. , 1953, Nature.

[187]  R. Franklin,et al.  Molecular Configuration in Sodium Thymonucleate , 1953, Nature.

[188]  L Pauling,et al.  A Proposed Structure For The Nucleic Acids. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[189]  H. Hauptman Solution of the phase problem , 1953 .

[190]  V. Vand,et al.  The structure of synthetic polypeptides. I. The transform of atoms on a helix , 1952 .

[191]  D. Sayre The squaring method: a new method for phase determination , 1952 .

[192]  L. Pauling,et al.  The pleated sheet, a new layer configuration of polypeptide chains. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[193]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[194]  C. Bunn,et al.  XI. The X-Ray Crystallographic Investigation of the Structure of Penicillin , 1949 .

[195]  E. Chargaff,et al.  The composition of the pentose nucleic acids of yeast and pancreas. , 1948, The Journal of biological chemistry.

[196]  C. Carlisle,et al.  The crystal structure of cholesteryl iodide , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[197]  J. D. Bernal,et al.  X-RAY AND CRYSTALLOGRAPHIC STUDIES OF PLANT VIRUS PREPARATIONS : I. INTRODUCTION AND PREPARATION OF SPECIMENS II. MODES OF AGGREGATION OF THE VIRUS PARTICLES. , 1941 .

[198]  W. T. ASTBURY,et al.  Structure of Proteins , 1939, Nature.

[199]  N. Pirie,et al.  The Isolation and some Properties of Liquid Crystalline Substances from Solanaceous Plants Infected with Three Strains of Tobacco Mosaic Virus , 1937 .

[200]  J. Robertson 255. An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound , 1936 .

[201]  D. Crowfoot X-Ray Single Crystal Photographs of Insulin , 1935, Nature.

[202]  A. L. Patterson A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals , 1934 .

[203]  H. Lipson,et al.  Crystal Structure of the Alums , 1934, Nature.

[204]  J. D. Bernal,et al.  X-Ray Photographs of Crystalline Pepsin , 1934, Nature.

[205]  H. J. Woods,et al.  X-Ray Studies of the Structure of Hair, Wool, and Related Fibres. II. The Molecular Structure and Elastic Properties of Hair Keratin , 1934 .

[206]  William Thomas Astbury,et al.  X-Ray Studies of the Structure of Hair, Wool, and Related Fibres. I. General , 1932 .

[207]  J. Sumner THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .

[208]  Linus Pauling,et al.  The Crystal Structure of Molybdenite , 1923 .

[209]  W. Bragg,et al.  The Structure of Some Crystals as Indicated by Their Diffraction of X-rays , 1913 .

[210]  W. Bragg The Reflection of X-rays by Crystals. (II.) , 1913 .

[211]  W. Bragg,et al.  The Structure of the Diamond , 1913, Nature.

[212]  W. Bragg,et al.  The Reflection of X-Rays by Crystals , 1913, Nature.

[213]  W. L. Bragg,et al.  2 – The Diffraction of Short Electromagnetic Waves by a Crystal* , 1913 .

[214]  W. H. BRAGG X-rays and Crystals. , 1913, Nature.

[215]  W. K. Röntgen A NEW FORM OF RADIATION. , 1896, Science.

[216]  W. Röntgen,et al.  ON A NEW KIND OF RAYS. , 1896, Science.

[217]  P. Cramer,et al.  Structural Basis of Transcription : RNA Polymerase II at 2 . 8 Å Resolution , 2022 .

[218]  V. Ramakrishnan,et al.  Structure of the 30 S ribosomal subunit , 2022 .