A globally stabilizing nonlinear model predictive control framework

A globally stabilizing nonlinear predictive control (NMPC) framework is developed by a simple design of the terminal cost used in relevant optimization setup.We first adapt the recent results on the finite horizon state-dependent Riccati equation (SDRE) based control for unconstrained nonlinear systems to prove that such a control can be globally stabilizing in case a sufficiently large optimization horizon is selected. Then, we use the resulting globally stabilizing Lyapunov function as a terminal cost within the optimization setup to get a novel NMPC. We also adapt the results on the stability of the NMPC, based on the control Lyapunov function approach to prove global stability of the proposed control framework. The results are validated through extensive simulation setups for some unconstrained nonlinear dynamical systems.

[1]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[2]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[3]  D. Limón,et al.  Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control , 2009 .

[4]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[5]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[6]  Tayfun Çimen,et al.  State-Dependent Riccati Equation (SDRE) Control: A Survey , 2008 .

[7]  John R. Hauser,et al.  Unconstrained receding horizon control of nonlinear systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[9]  Zhihua Qu,et al.  A New Sub-Optimal Nonlinear Control Design Technique - SDARE , 1996 .

[10]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[11]  Ali Heydari,et al.  Approximate closed-form solutions to finite-horizon optimal control of nonlinear systems , 2012, 2012 American Control Conference (ACC).

[12]  F. Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997 .

[13]  A. Jadbabaie,et al.  Stabilizing receding horizon control of nonlinear systems: a control Lyapunov function approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[14]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[15]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[16]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[17]  James A. Primbs,et al.  Feasibility and stability of constrained finite receding horizon control , 2000, Autom..

[18]  G. Cook,et al.  Suboptimal control for the nonlinear quadratic regulator problem , 1975, Autom..

[19]  Alberto Bemporad,et al.  Robustness in Identification and Control , 1999 .

[20]  Victor M. Becerra,et al.  Solving complex optimal control problems at no cost with PSOPT , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[21]  Neil F. Palumbo,et al.  Integrated missile guidance and control: a state dependent Riccati differential equation approach , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[22]  J. D. Pearson Approximation Methods in Optimal Control I. Sub-optimal Control† , 1962 .

[23]  Yang Wang,et al.  Fast Model Predictive Control Using Online Optimization , 2008 .

[24]  John Hauser,et al.  On the stability of receding horizon control with a general terminal cost , 2005, IEEE Transactions on Automatic Control.

[25]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[26]  Anil V. Rao,et al.  ( Preprint ) AAS 09-334 A SURVEY OF NUMERICAL METHODS FOR OPTIMAL CONTROL , 2009 .

[27]  A. G. Alleyne,et al.  Experimental real-time SDRE control of an underactuated robot , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[28]  B. Friedland On controlling systems with state-variable constraints , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[29]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[30]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[31]  J. R. Cloutier,et al.  Full Envelope Missile Longitudinal Autopilot Design Using the State-Dependent Riccati Equation Method , 1994 .

[32]  J. Cloutier,et al.  Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method , 1998 .

[33]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[34]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[35]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[36]  John Doyle,et al.  A receding horizon generalization of pointwise min-norm controllers , 2000, IEEE Trans. Autom. Control..