Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a 'Trichromacy' Theory of Texture

I E E E Trans on P A M ! , (accepted), 1999. Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo - T o w a r d s a T r i e h r o m a e y T h e o r y of Texture Song C h u n Z h u , X i u Wen Liu, Ying Nian W u Abstract T h i s article presents a m a t h e m a t i c a l definition of texture - the Julesz ensemble 0(h), w h i c h is the set of a l l images (defined on Z ) that share identical statistics h. T h e n texture m o d e l i n g is posed as a n inverse problem: given a set of images sampled from a n u n k n o w n Julesz ensemble fi(h*), we search for the statistics h* w h i c h define the ensemble. A Julesz ensemble fi(h) has a n associated p r o b a b i l i t y d i s t r i b u t i o n g(I;h), w h i c h is uniform over the images i n the ensemble a n d has zero p r o b a b i l i t y outside. I n a c o m p a n i o n paper[32], q(I; h) is shown to be the limit distribution of the F R A M E ( F i l t e r , R a n d o m F i e l d , A n d M i n i m a x E n t r o p y ) model[35] as the image lattice A -~ 7r. T h i s conclusion establishes the intrinsic link between the scientific definition of texture o n Z models of texture o n finite lattices. a n d the m a t h e m a t i c a l It brings two advantages to computer vision. T h e engineering practice of synthesizing texture images by m a t c h i n g statistics has been put o n a m a t h e m a t i c a l foundation. 2). W e are released from the b u r d e n of learning the expensive F R A M E m o d e l i n feature pursuit, m o d e l selection a n d texture synthesis. In this paper, a n efficient M a r k o v chain M o n t e C a r l o a l g o r i t h m is proposed for s a m p l i n g Julesz ensembles. T h e a l g o r i t h m generates r a n d o m texture images by m o v i n g along the directions of filter coefficients a n d thus extends the t r a d i t i o n a l single site G i b b s sampler. T h i s paper also compares four p o p u l a r statistical measures i n the literature, namely, moments, rectified functions, m a r g i n a l histograms a n d joint histograms of linear filter responses i n terms of their descriptive abilities. O u r experiments suggest that a s m a l l number of bins i n m a r g i n a l histograms are sufficient for c a p t u r i n g a variety of texture patterns. W e illustrate our theory a n d a l g o r i t h m by successfully synthesizing a number of n a t u r a l textures. Keywords: G i b b s ensemble, Julesz ensemble, texture modeling, texture synthesis, M a r k o v chain M o n t e C a r l o . Song C h u n Z h u a n d X i u W e n L i u are w i t h the Department of C o m p u t e r a n d Informa- t i o n Sciences, T h e O h i o State University, C o l u m b u s , O H 43210. Y i n g N i a n W u is w i t h the Department of Statistics, U n i v e r s i t y of C a l i f o r n i a , Los Angeles, C A 90095.

[1]  Kris Popat,et al.  Cluster-based probability model and its application to image and texture processing , 1997, IEEE Trans. Image Process..

[2]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[3]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[4]  Anne Treisman,et al.  Features and objects in visual processing , 1986 .

[5]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[6]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[7]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[8]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[9]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[10]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[11]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[12]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[14]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[15]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[16]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[17]  Paul A. Viola,et al.  A Non-Parametric Multi-Scale Statistical Model for Natural Images , 1997, NIPS.

[18]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  B. Julesz Dialogues on Perception , 1994 .

[21]  James A. Bucklew,et al.  Large Deviation Techniques in Decision, Simulation, and Estimation , 1990 .

[22]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[23]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Jun S. Liu,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[25]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[27]  Alan L. Yuille,et al.  Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Song-Chun Zhu,et al.  Equivalence of Julesz and Gibbs texture ensembles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[29]  Donald Geman,et al.  Gibbs distributions and the bayesian restoration of images , 1984 .

[30]  Refractor Vision , 2000, The Lancet.

[31]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[32]  Eero P. Simoncelli,et al.  Texture Representation and Synthesis Using Correlation of Complex Wavelet Coefficient Magnitudes , 1999 .

[33]  Alex Pentland,et al.  Markov/Gibbs texture modeling: aura matrices and temperature effects , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[35]  Songde Ma,et al.  Model driven synthesis of natural textures for 3-D scenes , 1986, Comput. Graph..

[36]  Songde Ma,et al.  Model driven synthesis of natural textures for 3-D scenes , 1986, Comput. Graph..

[37]  Michael S. Landy,et al.  Orthogonal Distribution Analysis: A New Approach to the Study of Texture Perception , 1991 .

[38]  Song-Chun Zhu,et al.  Embedding Gestalt Laws in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..