Superior Tensile Creep Behavior of a Novel Oxide Dispersion Strengthened CrCoNi Multi-Principal Element Alloy

[1]  R. Ritchie,et al.  Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0.5Nb1.25Ta1.25TiZr at temperatures from ambient to 1200°C , 2022, Acta Materialia.

[2]  J. Yeh,et al.  Tensile creep behavior of HfNbTaTiZr refractory high entropy alloy at elevated temperatures , 2022, Acta Materialia.

[3]  E. George,et al.  Creep strength of refractory high-entropy alloy TiZrHfNbTa and comparison with Ni-base superalloy CMSX-4 , 2022, Cell Reports Physical Science.

[4]  R. Ritchie,et al.  CANTOR-DERIVED medium-entropy alloys: Bridging the gap between traditional metallic and high-entropy alloys , 2022, Journal of Materials Research and Technology.

[5]  Jingchuan Zhu,et al.  Effect of fabrication methods on microstructures, mechanical properties and strengthening mechanisms of Fe0.25CrNiAl medium-entropy alloy , 2021 .

[6]  D. Wan,et al.  Microstructure and nanomechanical behavior of an additively manufactured (CrCoNiFe)94Ti2Al4 high-entropy alloy , 2021, Materials Science and Engineering: A.

[7]  A. Guitton,et al.  Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions , 2021 .

[8]  C. Kiminami,et al.  Design, phase equilibria, and coarsening kinetics of a new γ/γ′ precipitation-hardened multi-principal element alloy , 2021 .

[9]  E. George,et al.  Tensile creep properties of a CrMnFeCoNi high-entropy alloy , 2021 .

[10]  C. Kantzos,et al.  Efficient production of a high-performance dispersion strengthened, multi-principal element alloy , 2020, Scientific Reports.

[11]  M. Zhang,et al.  Influence of annealing on the creep behavior of GlidCop Al-15 , 2020, Materials Science and Engineering: A.

[12]  K. Sridharan,et al.  Effects of Al and Ti Additions on Irradiation Behavior of FeMnNiCr Multi-Principal-Element Alloy , 2020, JOM.

[13]  Qian Yu,et al.  The role of low angle grain boundary in deformation of titanium and its size effect , 2019, Scripta Materialia.

[14]  E. George,et al.  Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures , 2019, Acta Materialia.

[15]  W. Skrotzki,et al.  Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy , 2018, Intermetallics.

[16]  E. Lavernia,et al.  A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength , 2018, Science Advances.

[17]  J. Matějíček,et al.  Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy , 2018, Materials Science and Engineering: A.

[18]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[19]  M. Nili-Ahmadabadi,et al.  Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion , 2018 .

[20]  G. Pharr,et al.  The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy , 2017 .

[21]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[22]  J. Matějíček,et al.  Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy , 2017 .

[23]  G. Eggeler,et al.  Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy , 2016 .

[24]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[25]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[26]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[27]  M. W. Decker,et al.  Creep properties of an extruded copper–8% chromium–4% niobium alloy , 2004 .

[28]  M. E. Kassner,et al.  Creep cavitation in metals , 2003 .

[29]  Jin Yu,et al.  Effect of matrix hardness on the creep properties of a 12CrMoVNb steel , 1999 .

[30]  K. R. Anderson,et al.  Creep Deformation of Dispersion-Strengthened Copper , 1996 .

[31]  H. Vehoff,et al.  Nucleation and growth of cavities at defined grain boundaries in bicrystals , 1990 .

[32]  J. Tien,et al.  On the creep rate stress dependence of particle strengthened alloys , 1986 .

[33]  W. Nix,et al.  High temperature creep of Ni-20Cr-2ThO2 single crystals , 1976 .

[34]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[35]  E. George,et al.  Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy , 2020 .

[36]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[37]  E. George,et al.  Review of Trace Element Effects on High-Temperature Fracture of Fe- and Ni-Base Alloys , 1998 .

[38]  B. F. Dyson,et al.  Continuous cavity nucleation and creep fracture , 1983 .

[39]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .

[40]  J. Silcox,et al.  Direct observations of defects in quenched gold , 1959 .