Misalignment-robust face recognition

In this paper, we study the problem of subspace-based face recognition under scenarios with spatial misalignments and/or image occlusions. For a given subspace, the embedding of a new datum and the underlying spatial misalignment parameters are simultaneously inferred by solving a constrained lscr1 norm optimization problem, which minimizes the error between the misalignment-amended image and the image reconstructed from the given subspace along with its principal complementary subspace. A byproduct of this formulation is the capability to detect the underlying image occlusions. Extensive experiments on spatial misalignment estimation, image occlusion detection, and face recognition with spatial misalignments and image occlusions all validate the effectiveness of our proposed general formulation.

[1]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[2]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[4]  S. Shan,et al.  Review the strength of Gabor features for face recognition from the angle of its robustness to mis-alignment , 2004, ICPR 2004.

[5]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Timothy F. Cootes,et al.  Comparing Active Shape Models with Active Appearance Models , 1999, BMVC.

[8]  YanShuicheng,et al.  Graph Embedding and Extensions , 2007 .

[9]  Alex Pentland,et al.  Eigenfaces for Face Recognition , 1991 .

[10]  Jiawei Han,et al.  Spectral Regression: A Unified Approach for Sparse Subspace Learning , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[11]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Qiang Ji,et al.  Automatic Eye Detection and Its Validation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[14]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[15]  Jieping Ye,et al.  Null space versus orthogonal linear discriminant analysis , 2006, ICML '06.

[16]  Fei-Fei Li,et al.  Variational Shift Invariant Probabilistic PCA for Face Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[17]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Xiaogang Wang,et al.  A unified framework for subspace face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  James H. Elder,et al.  Probabilistic Linear Discriminant Analysis for Inferences About Identity , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998 .

[21]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Xiaogang Wang,et al.  Random Sampling for Subspace Face Recognition , 2006, International Journal of Computer Vision.

[24]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[25]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[26]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Wen Gao,et al.  Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[28]  I. Jolliffe Principal Components in Regression Analysis , 1986 .

[29]  I. Jolliffe Principal Component Analysis , 2002 .