An enhanced polygonal finite‐volume method for unstructured hybrid meshes

Irregular hybrid meshes may excessively distort the node-dual finite-volume discretization. A new scheme is formulated that uses a different type of polygonal control volume. Superior stability of the polygonal scheme over the conventional node-dual scheme is demonstrated on representative irregular hybrid meshes for incompressible viscous flow past a circular cylinder. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  P. Nithiarasu An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows , 2003 .

[2]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[3]  Larisa Branets,et al.  A local cell quality metric and variational grid smoothing algorithm , 2005, Engineering with Computers.

[4]  Hyung Taek Ahn A new incompressible Navier-Stokes method with general hybrid meshes and its application to flow/structure interactions , 2005 .

[5]  Yannis Kallinderis,et al.  Incompressible Navier-Stokes method with general hybrid meshes , 2005 .

[6]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[7]  Herman Deconinck,et al.  Object‐oriented three‐dimensional hybrid grid generation , 2003 .

[8]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[9]  R. Smith,et al.  An edge-based method for the incompressible Navier—Stokes equations on polygonal meshes , 2001 .

[10]  Yannis Kallinderis,et al.  Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes , 2006, J. Comput. Phys..

[11]  Antony Jameson,et al.  A new implicit algorithm with multigrid for unsteady incompressible flow calculations , 1995 .

[12]  Jiri Blazek,et al.  Accurate and Efficient Discretization of Navier-Stokes Equations on Mixed Grids , 2000 .

[13]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[14]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[15]  Eli Turkel,et al.  Review of preconditioning methods for fluid dynamics , 1993 .

[16]  W. K. Anderson,et al.  Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .

[17]  D. Whitfield Unsteady three-dimensional incompressible Euler and Navier-Stokes solver for stationary and dynamic grids , 1991 .

[18]  Mark E. Braaten,et al.  Three-Dimensional Unstructured Adaptive Multigrid Scheme for the Navier-Stokes Equations , 1996 .

[19]  Arnaud G. Malan,et al.  An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation , 2002 .

[20]  Yannis Kallinderis,et al.  Adaptive hybrid (prismatic–tetrahedral) grids for incompressible flows , 1998 .

[21]  Graham F. Carey,et al.  Extension of a Mesh Quality Metric for Elements With a Curved Boundary Edge or Surface , 2005, J. Comput. Inf. Sci. Eng..

[22]  Sangmook Shin,et al.  Reynolds-Averaged Navier-Stokes Computation of Tip Clearance Flow in a Compressor Cascade Using an Unstructured Grid , 2001 .

[23]  H. Saunders,et al.  Finite Elements—A Second Course (Vol. II) , 1987 .

[24]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[25]  Paul Lin,et al.  TWO-DIMENSIONAL IMPLICIT TIME DEPENDENT CALCULATIONS FOR INCOMPRESSIBLE FLOWS ON ADAPTIVE UNSTRUCTURED MESHES , 2001 .

[26]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..