Multi-head finite automata: data-independent versus data-dependent computations

We develop a multi-head finite automata framework suitable for a more detailed study of the relationship between parallel logarithmic time and sequential logarithmic space, in the uniform and nonuniform settings. In both settings it turns out that NC1 requires data-independent or oblivious computations, i.e., the movement of the input-heads only depends on the length of the input, whereas logarithmic space is captured with data-dependent computations on multihead finite state machines. This sheds new light on the question whether NC1 and logarithmic space coincide.

[1]  Neil Immerman,et al.  Time, hardware, and uniformity , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[2]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[3]  Burkhard Monien Two-Way Multihead Automata Over a One-Letter Alphabet , 1980, RAIRO Theor. Informatics Appl..

[4]  M. Fischer,et al.  AN IMPROVED OVERLAP ARGUMENT FOR ON-LINE MULTIPLICATION , 1974 .

[5]  Burkhard Monien Transformational methods and their application to complexity problems , 1976, Acta Informatica.

[6]  Christoph Meinel,et al.  Polynomial Size Omega-Branching Programs and Their Computational Power , 1990, Inf. Comput..

[7]  Jürgen Dassow,et al.  Computational Calculus and Hardest Languages of Automata with Abstract Storages , 1991, FCT.

[8]  Juris Hartmanis On non-determinancy in simple computing devices , 2004, Acta Informatica.

[9]  Markus Holzer,et al.  Automata That Take Advice , 1995, MFCS.

[10]  Rolf Niedermeier,et al.  Data-Independences of Parallel Random Access Machines , 1993, FSTTCS.

[11]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[12]  Oscar H. Ibarra,et al.  On Two-way Multihead Automata , 1973, J. Comput. Syst. Sci..

[13]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[14]  S.-Y. Kuroda,et al.  Classes of Languages and Linear-Bounded Automata , 1964, Inf. Control..

[15]  Michael J. Fischer,et al.  Relations Among Complexity Measures , 1979, JACM.

[16]  Steven Lindell A Constant-Space Sequential Model of Computation for First-Order Logic , 1998, Inf. Comput..

[17]  Markus Holzer,et al.  Inductive Counting for Width-Restricted Branching Programs , 1996, Inf. Comput..

[18]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[19]  Burkhard Monien,et al.  Transformational methods and their application to complexity problems , 1976, Acta Informatica.

[20]  Claus-Peter Schnorr The network complexity and the Turing machine complexity of finite functions , 2004, Acta Informatica.

[21]  Holger Petersen The Head Hierarchy for Oblivious Finite Automata with Polynomial Advice Collapses , 1998, MFCS.

[22]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.