Closed-Form Solutions for Worst-Case Law Invariant Risk Measures with Application to Robust Portfolio Optimization

Worst-case risk measures provide a means of calculating the largest value of risk when only partial information of the underlying distribution is available. For popular risk measures such as value-...

[1]  S. Prospero,et al.  Portfolio Optimization with Spectral Measures of Risk , 2002, cond-mat/0203607.

[2]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[3]  M. Sion On general minimax theorems , 1958 .

[4]  Melvyn Sim,et al.  TRACTABLE ROBUST EXPECTED UTILITY AND RISK MODELS FOR PORTFOLIO OPTIMIZATION , 2009 .

[5]  Alois Pichler,et al.  Premiums and reserves, adjusted by distortions , 2013 .

[6]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[7]  Masao Fukushima,et al.  Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management , 2009, Oper. Res..

[8]  Alexander Shapiro,et al.  On Kusuoka Representation of Law Invariant Risk Measures , 2013, Math. Oper. Res..

[9]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[10]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[11]  Darinka Dentcheva,et al.  Kusuoka representation of higher order dual risk measures , 2010, Ann. Oper. Res..

[12]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[13]  A. Nemirovski Advances in convex optimization : conic programming , 2005 .

[14]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[15]  Kai Ye,et al.  Robust portfolio optimization: a conic programming approach , 2012, Comput. Optim. Appl..

[16]  David Wozabal,et al.  Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach , 2014, Oper. Res..

[17]  Abaxbank,et al.  Spectral Measures of Risk : a Coherent Representation of Subjective Risk Aversion , 2002 .

[18]  A. Lo Semi-parametric upper bounds for option prices and expected payoffs , 1987 .

[19]  A. Pichler The natural Banach space for version independent risk measures , 2013, 1303.6675.

[20]  James E. Smith,et al.  Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis , 1995, Oper. Res..

[21]  Georg Ch. Pflug,et al.  Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals , 2016, Math. Oper. Res..

[22]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[23]  M. Pullan A Duality Theory for Separated Continuous Linear Programs , 1996 .

[24]  Li Chen,et al.  Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection , 2011, Oper. Res..

[25]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[26]  Ioana Popescu,et al.  Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..

[27]  Mario Brandtner “Spectral Risk Measures: Properties and Limitations”: Comment on Dowd, Cotter, and Sorwar , 2016 .