The Sperner Property in Geometric and Partition Lattices

[1]  John H. Mason Maximal Families of Pairwise Disjoint Maximal Proper Chains in a Geometric Lattice , 1973 .

[2]  G. Rota,et al.  Studies in combinatorics , 1980 .

[3]  James B. Shearer,et al.  A simple counterexample to a conjecture of Rota , 1979, Discret. Math..

[4]  J. Spencer A Generalized Rota Conjecture for Partitions , 1974 .

[5]  Curtis Greene,et al.  A Counterexample to the Generalization of Sperner’s Theorem , 1971 .

[6]  Jerrold R. Griggs,et al.  Sufficient Conditions for a Symmetric Chain Order , 1977 .

[7]  I. Anderson Combinatorics of Finite Sets , 1987 .

[8]  de Ng Dick Bruijn,et al.  On the set of divisors of a number , 1951 .

[9]  L. D. Mesalkin A Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .

[10]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[11]  Douglas B. West,et al.  A Symmetric Chain Decomposition of L(4, n) , 1979, Eur. J. Comb..

[12]  L. H. Harper On a continuous analog of Sperner’s problem , 1985 .

[13]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[14]  D. J. Kleitman On an extremal property of antichains in partial orders , 1974 .

[15]  Maurice Pouzet,et al.  Sperner Properties for Groups and Relations , 1986, Eur. J. Comb..

[16]  Ronald L. Graham,et al.  Some Results on Matching in Bipartite Graphs , 1969 .

[17]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[18]  Konrad Engel,et al.  Sperner theory in partially ordered sets , 1985 .

[19]  E. Rodney Canfield Application of the Berry-Esséen Inequality to Combinatorial Estimates , 1980, J. Comb. Theory, Ser. A.

[20]  Daniel J. Kleitman,et al.  Normalized Matching in Direct Products of Partial Orders , 1973 .

[21]  Richard P. Stanley,et al.  Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.

[22]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[23]  D. Lubell A Short Proof of Sperner’s Lemma , 1966 .

[24]  Robert A. Proctor Representations of $\mathfrak{sl}( 2,\mathbb{C} )$ on Posets and the Sperner Property , 1982 .

[25]  K. A. Baker,et al.  A generalization of Sperner's lemma , 1969 .

[26]  Robert A. Proctor,et al.  Product partial orders with the sperner property , 1980, Discret. Math..

[27]  E. Rodney Canfield A sperner property preserved by product , 1980 .

[28]  Robert A. Proctor A Dynkin diagram classification theorem arising from a combinatorial problem , 1986 .

[29]  Jerrold R. Griggs The Sperner Property , 1984 .

[30]  L. H. Harper Morphisms for the strong Sperner property of Stanley and Griggs , 1984 .

[31]  Joseph P. S. Kung,et al.  The Radon Transforms of a Combinatorial Geometry, I , 1979, J. Comb. Theory, Ser. A.

[32]  L. D. Meshalkin Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .

[33]  Zoltán Füredi,et al.  Ramsey-Sperner theory , 1987, Discret. Math..

[34]  Koichiro Yamamoto Logarithmic order of free distributive lattice , 1954 .

[35]  Richard P. Stanley,et al.  Quotients of peck posets , 1984 .

[36]  Robert A. Proctor Solution of a sperner conjecture of stanley with a construction of gelfand , 1990, J. Comb. Theory, Ser. A.

[37]  Douglas B. West,et al.  Extremal Problems in Partially Ordered Sets , 1982 .

[38]  L. H. Harper The Morphology of Partially Ordered Sets , 1974, J. Comb. Theory, Ser. A.

[39]  D. Kleitman,et al.  Proof techniques in the theory of finite sets , 1978 .

[40]  Jerrold R. Griggs,et al.  On Chains and Sperner k-Families in Ranked Posets, II , 1980, J. Comb. Theory, Ser. A.

[41]  Bernt Lindström,et al.  A Partition of L(3, n) into Saturated Symmetric Chains , 1980, Eur. J. Comb..

[42]  E. Rodney Canfield On a problem of rota , 1978 .

[43]  R. C. Mullin On rota's problem concerning partitions , 1968 .

[44]  E. Lieb Concavity properties and a generating function for stirling numbers , 1968 .

[45]  E. Rodney Canfield,et al.  On the Location of the Maximum Stirling Number(s) of the Second Kind , 1978 .

[46]  J. Kahn Some Non‐Sperner Paving Matroids , 1980 .