The Sperner Property in Geometric and Partition Lattices
暂无分享,去创建一个
[1] John H. Mason. Maximal Families of Pairwise Disjoint Maximal Proper Chains in a Geometric Lattice , 1973 .
[2] G. Rota,et al. Studies in combinatorics , 1980 .
[3] James B. Shearer,et al. A simple counterexample to a conjecture of Rota , 1979, Discret. Math..
[4] J. Spencer. A Generalized Rota Conjecture for Partitions , 1974 .
[5] Curtis Greene,et al. A Counterexample to the Generalization of Sperner’s Theorem , 1971 .
[6] Jerrold R. Griggs,et al. Sufficient Conditions for a Symmetric Chain Order , 1977 .
[7] I. Anderson. Combinatorics of Finite Sets , 1987 .
[8] de Ng Dick Bruijn,et al. On the set of divisors of a number , 1951 .
[9] L. D. Mesalkin. A Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[10] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[11] Douglas B. West,et al. A Symmetric Chain Decomposition of L(4, n) , 1979, Eur. J. Comb..
[12] L. H. Harper. On a continuous analog of Sperner’s problem , 1985 .
[13] R. P. Dilworth,et al. A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .
[14] D. J. Kleitman. On an extremal property of antichains in partial orders , 1974 .
[15] Maurice Pouzet,et al. Sperner Properties for Groups and Relations , 1986, Eur. J. Comb..
[16] Ronald L. Graham,et al. Some Results on Matching in Bipartite Graphs , 1969 .
[17] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[18] Konrad Engel,et al. Sperner theory in partially ordered sets , 1985 .
[19] E. Rodney Canfield. Application of the Berry-Esséen Inequality to Combinatorial Estimates , 1980, J. Comb. Theory, Ser. A.
[20] Daniel J. Kleitman,et al. Normalized Matching in Direct Products of Partial Orders , 1973 .
[21] Richard P. Stanley,et al. Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.
[22] L. Harper. Stirling Behavior is Asymptotically Normal , 1967 .
[23] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[24] Robert A. Proctor. Representations of $\mathfrak{sl}( 2,\mathbb{C} )$ on Posets and the Sperner Property , 1982 .
[25] K. A. Baker,et al. A generalization of Sperner's lemma , 1969 .
[26] Robert A. Proctor,et al. Product partial orders with the sperner property , 1980, Discret. Math..
[27] E. Rodney Canfield. A sperner property preserved by product , 1980 .
[28] Robert A. Proctor. A Dynkin diagram classification theorem arising from a combinatorial problem , 1986 .
[29] Jerrold R. Griggs. The Sperner Property , 1984 .
[30] L. H. Harper. Morphisms for the strong Sperner property of Stanley and Griggs , 1984 .
[31] Joseph P. S. Kung,et al. The Radon Transforms of a Combinatorial Geometry, I , 1979, J. Comb. Theory, Ser. A.
[32] L. D. Meshalkin. Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[33] Zoltán Füredi,et al. Ramsey-Sperner theory , 1987, Discret. Math..
[34] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[35] Richard P. Stanley,et al. Quotients of peck posets , 1984 .
[36] Robert A. Proctor. Solution of a sperner conjecture of stanley with a construction of gelfand , 1990, J. Comb. Theory, Ser. A.
[37] Douglas B. West,et al. Extremal Problems in Partially Ordered Sets , 1982 .
[38] L. H. Harper. The Morphology of Partially Ordered Sets , 1974, J. Comb. Theory, Ser. A.
[39] D. Kleitman,et al. Proof techniques in the theory of finite sets , 1978 .
[40] Jerrold R. Griggs,et al. On Chains and Sperner k-Families in Ranked Posets, II , 1980, J. Comb. Theory, Ser. A.
[41] Bernt Lindström,et al. A Partition of L(3, n) into Saturated Symmetric Chains , 1980, Eur. J. Comb..
[42] E. Rodney Canfield. On a problem of rota , 1978 .
[43] R. C. Mullin. On rota's problem concerning partitions , 1968 .
[44] E. Lieb. Concavity properties and a generating function for stirling numbers , 1968 .
[45] E. Rodney Canfield,et al. On the Location of the Maximum Stirling Number(s) of the Second Kind , 1978 .
[46] J. Kahn. Some Non‐Sperner Paving Matroids , 1980 .