A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood

The Poisson-Gaussian model can accurately describe the noise present in a number of imaging systems. However most existing restoration methods rely on approximations of the Poisson-Gaussian noise statistics. We propose a convex optimization strategy for the reconstruction of images degraded by a linear operator and corrupted with a mixed Poisson-Gaussian noise. The originality of our approach consists of considering the exact, mixed continuous-discrete model corresponding to the data statistics. After establishing the Lipschitz differentiability and convexity of the Poisson-Gaussian neg-log-likelihood, we derive a primal-dual iterative scheme for minimizing the associated penalized criterion. The proposed method is applicable to a large choice of convex penalty terms. The robustness of our scheme allows us to handle computational difficulties due to infinite sums arising from the computation of the gradient of the criterion. We propose finite bounds for these sums, that are dependent on the current image estimate, and thus adapted to each iteration of our algorithm. The proposed approach is validated on image restoration examples. Then, the exact data fidelity term is used as a reference for studying some of its various approximations. We show that in a variational framework the Shifted Poisson and Exponential approximations lead to very good restoration results.

[1]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[2]  Ming Yan,et al.  Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..

[3]  Toshio Fukushima,et al.  Precise and fast computation of Lambert W-functions without transcendental function evaluations , 2013, J. Comput. Appl. Math..

[4]  Nelly Pustelnik,et al.  Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization , 2009, IEEE Transactions on Image Processing.

[5]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  Jean-Luc Starck,et al.  Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors , 2011, 1103.2213.

[7]  Fionn Murtagh,et al.  Image restoration with noise suppression using a multiresolution support. , 1995 .

[8]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[9]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[10]  Alessandro Foi,et al.  Clipped noisy images: Heteroskedastic modeling and practical denoising , 2009, Signal Process..

[11]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[12]  Vladimir Stankovic,et al.  Contrast enhancement and denoising of Poisson and Gaussian mixture noise for solar images , 2011, 2011 18th IEEE International Conference on Image Processing.

[13]  Radu Ioan Bot,et al.  Convergence Analysis for a Primal-Dual Monotone + Skew Splitting Algorithm with Applications to Total Variation Minimization , 2012, Journal of Mathematical Imaging and Vision.

[14]  Hugues Talbot,et al.  Iterative poisson-Gaussian noise parametric estimation for blind image denoising , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[15]  Richard M. Leahy,et al.  Spatiotemporal reconstruction of list-mode PET data , 2002, IEEE Transactions on Medical Imaging.

[16]  Ayan Chakrabarti,et al.  Image Restoration with Signal-dependent Camera Noise , 2012, ArXiv.

[17]  Gabriele Steidl,et al.  Epigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems , 2013, SSVM.

[18]  Hugues Talbot,et al.  An EM Approach for Time-Variant Poisson-Gaussian Model Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[19]  Javier Portilla,et al.  Efficient joint poisson-gauss restoration using multi-frame L2-relaxed-L0 analysis-based sparsity , 2011, 2011 18th IEEE International Conference on Image Processing.

[20]  Tieyong Zeng,et al.  A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..

[21]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[22]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  Hugues Talbot,et al.  A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  S. Yun,et al.  Frame-based Poisson image restoration using a proximal linearized alternating direction method , 2013 .

[26]  Raymond H. Chan,et al.  A Two-Stage Image Segmentation Method for Blurry Images with Poisson or Multiplicative Gamma Noise , 2014, SIAM J. Imaging Sci..

[27]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[28]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[29]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[30]  S. Anthoine,et al.  Some proximal methods for CBCT and PET tomography , 2011, Optical Engineering + Applications.

[31]  Nelly Pustelnik,et al.  Nested Iterative Algorithms for Convex Constrained Image Recovery Problems , 2008, SIAM J. Imaging Sci..

[32]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[33]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[34]  Nikos Komodakis,et al.  Playing with Duality: An overview of recent primal?dual approaches for solving large-scale optimization problems , 2014, IEEE Signal Process. Mag..

[35]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[36]  S. Bonettini,et al.  New convergence results for the scaled gradient projection method , 2014, 1406.6601.

[37]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[38]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..

[39]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[40]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[41]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[42]  Raymond H. Chan,et al.  Fast Two-Phase Image Deblurring Under Impulse Noise , 2009, Journal of Mathematical Imaging and Vision.

[43]  Xavier Bresson,et al.  A Short Note for Nonlocal TV Minimization , 2009 .

[44]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[45]  Émilie Chouzenoux,et al.  A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[46]  Michael Unser,et al.  Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications , 2012, IEEE Transactions on Image Processing.

[47]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[48]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[49]  Jian Yu,et al.  Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization , 2011, Pattern Recognit..

[50]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[51]  Xiaoqun Zhang,et al.  A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration , 2013 .

[52]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[53]  J. Giovannelli,et al.  Positive deconvolution for superimposed extended source and point sources , 2005, astro-ph/0507691.

[54]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[55]  Thierry Blu,et al.  Multiframe sure-let denoising of timelapse fluorescence microscopy images , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[56]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[57]  Yong Ho Moon,et al.  Simplified noise model parameter estimation for signal-dependent noise , 2014, Signal Process..

[58]  Boracchi Giacomo,et al.  Multiframe Raw-Data Denoising Based On Block-Matching And 3-D Filtering For Low-Light Imaging And Stabilization , 2008 .

[59]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[60]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[61]  J. Aujol,et al.  Some proximal methods for Poisson intensity CBCT and PET , 2012 .

[62]  Zuowei Shen,et al.  A reweighted $l^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise , 2015 .

[63]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[64]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[65]  Henri Lantéri,et al.  Restoration of Astrophysical Images—The Case of Poisson Data with Additive Gaussian Noise , 2005, EURASIP J. Adv. Signal Process..

[66]  Steve McLaughlin,et al.  Spectral Unmixing of Multispectral Lidar Signals , 2015, IEEE Transactions on Signal Processing.

[67]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[68]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[69]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[71]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[72]  M. Bertero,et al.  The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise , 2008 .