Implementation of Mahalanobis-Taguchi System for the Election of Major League Baseball Hitters to the Hall of Fame

Various statistical classification methods to predict election to the Major League Baseball hall of fame of are implemented and their accuracies are compared. Seventeen independent variables are selected from the data of candidates eligible for the hall of fame and well-known classification methods such as discriminant analysis and logistic regression as well as the recently proposed Mahalanobis-Taguchi system(MTS). The MTS showed a better performance than the others in classification accuracy because it is especially efficient in cases where multivariate data does not constitute directionally geographical groups according to attributes.