Rheological and DSC changes in poly(vinyl alcohol) gels induced by immersion in water

Poly(vinyl alcohol) (PVA) gels were prepared by freezing and thawing aqueous solutions at temperatures from −20 to 15°C. The temperature was varied periodically by use of a computer. The endothermic DSC peak was observed for the PVA gels at about 60°C for five specimens of different degrees of saponification (DS). Another endothermic peak was also observed in the range 67–80°C, and this peak shifted to higher temperature with increasing DS. These endothermic peaks shifted to lower temperature on immersion of the PVA gels in water. The dynamic Young's modulus E′ at room temperature was also decreased by immersion of PVA gels in water; E′ decreased monotonically with increasing temperature for PVA gels without immersion in water, while it increased up to a certain temperature and then decreased with increasing temperature for PVA gels in water. The X-ray diffraction showed a characteristic crystalline pattern for PVA gels of higher DS, and this peak was intensified by stretching the gel.