The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation.

Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down-regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild-type rootstocks and scions indicated that mainly the root-specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2-interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.

[1]  M. Banfield,et al.  On the front line: structural insights into plant–pathogen interactions , 2013, Nature Reviews Microbiology.

[2]  Eloise Foo,et al.  Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. , 2013, Annals of botany.

[3]  E. Foo,et al.  Auxin influences strigolactones in pea mycorrhizal symbiosis. , 2013, Journal of plant physiology.

[4]  Susanne Wurst,et al.  Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco , 2013 .

[5]  G. Gheysen,et al.  Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. , 2013, Molecular plant-microbe interactions : MPMI.

[6]  D. Wipf,et al.  The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. , 2012, Molecular plant.

[7]  S. Fujioka,et al.  Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant , 2012, Plant Molecular Biology.

[8]  J. Mundy,et al.  Receptor-like kinase complexes in plant innate immunity , 2012, Front. Plant Sci..

[9]  Adrien S. Chevalier,et al.  Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W] , 2012, Plant Cell.

[10]  D. Wipf,et al.  Sugar transporters in plants and in their interactions with fungi. , 2012, Trends in plant science.

[11]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[12]  Miroslav Strnad,et al.  Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. , 2012, Nature chemical biology.

[13]  J. Doidy The Medicago truncatula sucrose transporter family , 2012 .

[14]  H. Bouwmeester,et al.  A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching , 2012, Nature.

[15]  S. Kikuchi,et al.  Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA] , 2012, Plant Physiology.

[16]  M. Lohse,et al.  Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. , 2012, The Plant journal : for cell and molecular biology.

[17]  W. Schulze,et al.  The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase. , 2012, Molecular plant.

[18]  C. Zipfel,et al.  Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1 , 2011, Proceedings of the National Academy of Sciences.

[19]  N. Sauer,et al.  A Versatile Monosaccharide Transporter That Operates in the Arbuscular Mycorrhizal Fungus Glomus sp Is Crucial for the Symbiotic Relationship with Plants[C][W] , 2011, Plant Cell.

[20]  A. Hannoufa,et al.  DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis , 2011, Planta.

[21]  C. Kühn,et al.  Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. , 2011, Journal of plant physiology.

[22]  G. Neumann,et al.  Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. , 2011, Journal of plant physiology.

[23]  H. Koltai Strigolactones are regulators of root development. , 2011, The New phytologist.

[24]  J. Ludwig-Müller,et al.  Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. , 2011, The New phytologist.

[25]  M. Aluru,et al.  A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. , 2011, The Plant journal : for cell and molecular biology.

[26]  M. Hanlon,et al.  Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. , 2011, The New phytologist.

[27]  J. Verdeil,et al.  Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots , 2011, Mycorrhiza.

[28]  A. Schulz,et al.  Recycling of Solanum sucrose transporters expressed in yeast, tobacco, and in mature phloem sieve elements. , 2010, Molecular plant.

[29]  Christopher P. L. Grof,et al.  Sucrose transporters of higher plants. , 2010, Current opinion in plant biology.

[30]  N. Requena,et al.  Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. , 2010, The New phytologist.

[31]  P. Franken Molecular–Physiological Aspects of the AM Symbiosis Post Penetration , 2010 .

[32]  S. Schaarschmidt,et al.  The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. , 2009, Phytochemistry.

[33]  J. Kudla,et al.  New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. , 2009, Molecular plant.

[34]  H. Xue,et al.  Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1 , 2009, Cell Research.

[35]  K. Shimamoto,et al.  Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. , 2009, Plant & cell physiology.

[36]  S. Hayat,et al.  Effects of brassinosteroids on the plant responses to environmental stresses. , 2009, Plant physiology and biochemistry : PPB.

[37]  R. Vicentini,et al.  Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content , 2009, Plant Cell Reports.

[38]  E. Truernit,et al.  AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer: AtSUC3 sucrose carrier , 2008 .

[39]  Shubin Sun,et al.  Tomato sugar transporter genes associated with mycorrhiza and phosphate , 2008, Plant Growth Regulation.

[40]  Laurent Laplaze,et al.  SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria , 2008, Proceedings of the National Academy of Sciences.

[41]  U. Nehls Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. , 2008, Journal of experimental botany.

[42]  S. Steinkellner,et al.  Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. , 2007, The New phytologist.

[43]  R. Heinzen,et al.  Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii , 2007, Cellular microbiology.

[44]  S. Isayenkov,et al.  Jasmonates in arbuscular mycorrhizal interactions. , 2007, Phytochemistry.

[45]  T. Roitsch,et al.  Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. , 2006, Journal of experimental botany.

[46]  T. Altmann,et al.  Metabolic changes in fruits of the tomato dx mutant. , 2006, Phytochemistry.

[47]  M. Blatt,et al.  Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1 K+ Channel at the Plasma Membrane[W] , 2006, The Plant Cell Online.

[48]  F. Carrari,et al.  Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. , 2006, The Plant journal : for cell and molecular biology.

[49]  K. Akiyama,et al.  Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi , 2005, Nature.

[50]  P. Hilson,et al.  Modular cloning in plant cells. , 2005, Trends in plant science.

[51]  H. Xue,et al.  Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell Elongationw⃞ , 2005, The Plant Cell Online.

[52]  Kathryn S. Lilley,et al.  Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for Plasma Membrane Lipid Rafts1 , 2005, Plant Physiology.

[53]  Klaus Harter,et al.  Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. , 2004, The Plant journal : for cell and molecular biology.

[54]  H. Lehrach,et al.  A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. , 2004, Molecular cell.

[55]  Stéphane Claverol,et al.  Lipid Rafts in Higher Plant Cells , 2004, Journal of Biological Chemistry.

[56]  J. B. Reid,et al.  Brassinosteroids Do Not Undergo Long-Distance Transport in Pea. Implications for the Regulation of Endogenous Brassinosteroid Levels1 , 2004, Plant Physiology.

[57]  N. Sauer,et al.  Wounding Enhances Expression of AtSUC3, a Sucrose Transporter from Arabidopsis Sieve Elements and Sink Tissues1 , 2004, Plant Physiology.

[58]  Guoli Chen,et al.  Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism. , 2004, American journal of physiology. Cell physiology.

[59]  J. B. Reid,et al.  Molecular characterization of the brassinosteroid-deficient lkb mutant in pea , 2001, Plant Molecular Biology.

[60]  M. Gryndler,et al.  The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum , 1998, Biologia Plantarum.

[61]  A. Pühler,et al.  The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. , 2003, Molecular plant-microbe interactions : MPMI.

[62]  H. Vierheilig,et al.  Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant , 2003 .

[63]  N. Sauer,et al.  PmSUC3: Characterization of a SUT2/SUC3-Type Sucrose Transporter from Plantago major Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010967. , 2003, The Plant Cell Online.

[64]  E. Truernit,et al.  AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. , 2000, The Plant journal : for cell and molecular biology.

[65]  W. Frommer,et al.  Function of the cytosolic N‐terminus of sucrose transporter AtSUT2 in substrate affinity , 2000, FEBS letters.

[66]  W. Frommer,et al.  SUT2, a Putative Sucrose Sensor in Sieve Elements , 2000, Plant Cell.

[67]  T. Roitsch,et al.  Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. , 2000, The Plant journal : for cell and molecular biology.

[68]  I. Blilou,et al.  Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid , 1999 .

[69]  M. J. Harrison,et al.  MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. , 1999, Annual review of plant physiology and plant molecular biology.

[70]  Jonathan D. G. Jones,et al.  The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Anderson,et al.  Regulation of arbuscule formation by carbon in the plant , 1998 .

[72]  N. Chua,et al.  The Arabidopsis DIMINUTO/DWARF1 Gene Encodes a Protein Involved in Steroid Synthesis , 1998, Plant Cell.

[73]  W. Frommer,et al.  Macromolecular Trafficking Indicated by Localization and Turnover of Sucrose Transporters in Enucleate Sieve Elements , 1997, Science.

[74]  W. Frommer,et al.  Companion cell‐specific inhibition of the potato sucrose transporter SUT1 , 1996 .

[75]  F. Gnädinger,et al.  Analysis of Parsley Arbuscular Endomycorrhiza: Infection Development and mRNA Levels of Defense-Related Genes , 1994 .

[76]  U. Drüge,et al.  Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels , 1993 .

[77]  H. Bothe,et al.  Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.) , 1993 .

[78]  Michael F. Allen,et al.  The Spread of Va Mycorrhizal Fungal Hyphae in the Soil: Inoculum Types and External Hyphal Architecture , 1991 .

[79]  N. Heegaard,et al.  Crc Handbook Of Immunoblotting Of Proteins , 1988 .

[80]  A. Trouvelot,et al.  Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une significantion fonctionnelle , 1986 .

[81]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[82]  J. M. Phillips,et al.  Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. , 1970 .