Dinuclear dialkoxo-bridged cyclopentadienylsiloxo titanium complexes.

The dinuclear dialkoxo-bridged complexes [(TiCl)(2)(mu-O(2)L)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})] (O(2)L = 1,2-O(2)C(2)H(4), 1,2-O(2)C(6)H(4), 1,2-(OCH(2))(2)C(6)H(4), O(2)SiPh(2)) were obtained by reaction of [(TiCl(2))(2)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})] () with the corresponding dilithium salt () or diol (, , ). Alkylation of and with ClRMg afforded [(TiR)(2)(mu-O(2)L)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})] (O(2)L = 1,2-O(2)C(2)H(4), R = Me , Bz ; O(2)L = 1,2-O(2)C(6)H(4), R = Me , Bz ). Addition of four equiv. of LiOiPr to afforded [{Ti(OiPr)(2)}(2)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})] (). Reaction of with Al(C(6)F(5))(3) produced the elimination of the dialkoxo ligand to give [{TiCl(C(6)F(5))}(2)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})] (), whereas the same reaction of with Al(C(6)F(5))(3) produced the oxo-alane adduct [(TiCl)(2)(mu-O(2)L)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O.Al{C(6)F(5)}(3))})] (O(2)L = 1,2-O(2)C(6)H(4)) which was further transformed to give a mixture of and [(TiCl){Ti(C(6)F(5))}(mu-O(2)L)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})] (O(2)L = 1,2-O(2)C(6)H(4)). One benzyl group of complexes was abstracted with E(C(6)F(5))(3) (E = B, Al) to give the monoionic compounds [Ti(TiBz)(mu-O(2)L)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})][BzE(C(6)F(5))(3)] (O(2)L = 1,2-O(2)C(2)H(4), E = B , Al ; O(2)L = 1,2-O(2)C(6)H(4), E = B ), although was unstable in CD(2)Cl(2) evolving to a mixture of compounds where [(TiBz)(2)(mu-Cl)(mu-{(eta(5)-C(5)Me(4)SiMeO)(2)(mu-O)})][BzAl(C(6)F(5))(3)] () was identified, and compound was also unstable at ambient temperature. Polymerization of epsilon-caprolactone was only achieved with the tetraalkoxo compound . All of these complexes were characterized by NMR spectroscopy and , and by X-ray diffraction studies.

[1]  E. Herdtweck,et al.  Mono- and Dinuclear Cyclopentadienylsiloxo Titanium Complexes: Synthesis, Reactivity, and Catalytic Polymerization Applications , 2008 .

[2]  S. Szafert,et al.  Titanium and zirconium benzofuranoxides. Crystal structures and catalytic properties. , 2008, Dalton transactions.

[3]  O. I. Adebolu,et al.  Living Ring-Opening Polymerization of ε-Caprolactone with Ti Alkoxides Derived from the Cp2TiCl-Catalyzed SET Reduction of Aldehydes , 2008 .

[4]  T. Marks,et al.  Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts. , 2008, Journal of the American Chemical Society.

[5]  R. Duchateau,et al.  Zwitterionic bis(phenolate)amine lanthanide complexes for the ring-opening polymerisation of cyclic esters. , 2008, Dalton transactions.

[6]  B. Lee,et al.  Bimetallic phenylene-bridged Cp/amide titanium complexes and their olefin polymerization. , 2007, Dalton transactions.

[7]  M. Eisen,et al.  Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters , 2007 .

[8]  S. M. Humphrey,et al.  Titanium, zinc and alkaline-earth metal complexes supported by bulky O,N,N,O-multidentate ligands: syntheses, characterisation and activity in cyclic ester polymerisation. , 2006, Dalton transactions.

[9]  I. Sierra,et al.  Polymerization of ε-caprolactone using bulky alkoxo-titanium complexes and structural analysis of [Ti(OBorneoxo)2Cl2(thf)2] , 2006 .

[10]  Matthew D. Jones,et al.  Synthesis and X-ray structures of new titanium(IV) aryloxides and their exploitation for the ring opening polymerization of epsilon-caprolactone. , 2006, Inorganic chemistry.

[11]  F. Seeler,et al.  Derivatisation of boryl substituted titanium half-sandwich complexes -molecular structures of [Ti{(η5-C5H4)B(NiPr2)N(H)tBu}Cl2(NMe2)] and[{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] , 2006 .

[12]  O. Castaño,et al.  Carbon dioxide activation assisted by a bis(chlorodimethylsilyl)cyclopentadienyl titanium compound. , 2005, Angewandte Chemie.

[13]  Marta E. G. Mosquera,et al.  Aryl-imido niobium complexes with chloro-silyl and aryl-η-amidosilyl cyclopentadienyl ligands : X-ray structure of the constrained-geometry compound [Nb(η5-C5H4SiMe2-η1-NAr)(NAr)Cl] (Ar = 2,6-Me2C6H3) , 2005 .

[14]  M. H. Lee,et al.  Biphenylene-bridged dinuclear group 4 metal complexes : Enhanced polymerization properties in olefin polymerization , 2005 .

[15]  J. Okuda,et al.  Aluminum complexes with sulfide-linked bis(phenolato) ligands : Unusual structure and reactivity of the methyl bis(phenolato) complex [Al(tbmp)Me] (tbmp = 2,2'-thiobis(6-tert-butyl-4-methylphenolato)) , 2005 .

[16]  T. Cuenca,et al.  Stable Methylene- and Oxo-Bridged Monocyclopentadienyl Titanium Compounds. Molecular Structure of {Ti[μ-(η5-C5Me4SiMe2-O)]Me}2(μ-CH2)† , 2004 .

[17]  N. Taylor,et al.  Methacrylate polymerization using a dinuclear zirconocene initiator: a new approach for the controlled synthesis of methacrylate polymers. , 2004, Angewandte Chemie.

[18]  T. Marks,et al.  Bimetallic catalysis for styrene homopolymerization and ethylene-styrene copolymerization. Exceptional comonomer selectivity and insertion regiochemistry. , 2004, Journal of the American Chemical Society.

[19]  B. Bosnich,et al.  Principles of mononucleating and binucleating ligand design. , 2004, Chemical reviews.

[20]  T. Cuenca,et al.  Titanium and zirconium chloro, oxo and alkyl derivatives containing silyl-cyclopentadienyl ligands. Synthesis and characterisation , 2003 .

[21]  E. Herdtweck,et al.  Hydro- and chloro-substituted silyl- and silyl-η1-amido-η5-tetramethylcyclopentadienyl titanium complexes , 2003 .

[22]  H. Alt,et al.  Asymmetric dinuclear ansa zirconocene complexes with methyl and phenyl substituted bridging silicon atoms as dual site catalysts for the polymerization of ethylene , 2003 .

[23]  H. Alt,et al.  Dinuclear ansa zirconocene complexes as dual-site catalysts for the polymerization of ethylene , 2003 .

[24]  J. Verkade,et al.  Titanium alkoxides as initiators for the controlled polymerization of lactide. , 2003, Inorganic chemistry.

[25]  S. Noh,et al.  Syntheses of dinuclear titanium constrained geometry complexes with polymethylene bridges and their copolymerization properties , 2003 .

[26]  T. Marks,et al.  Catalyst/cocatalyst nuclearity effects in single-site polymerization. Enhanced polyethylene branching and alpha-olefin comonomer enchainment in polymerizations mediated by binuclear catalysts and cocatalysts via a new enchainment pathway. , 2002, Journal of the American Chemical Society.

[27]  H. Alt,et al.  Dinuclear ansa zirconocene complexes containing a sandwich and a half-sandwich moiety as catalysts for the polymerization of ethylene , 2002 .

[28]  K. Lyssenko,et al.  (fluorenyl)titanium triisopropoxide and bis(fluorenyl)titanium diisopropoxide: A facile synthesis, molecular structure, and catalytic activity in styrene polymerization , 2002 .

[29]  E. Chen,et al.  Tantalum(V)-Based Metallocene, Half-Metallocene, and Non-Metallocene Complexes as Ethylene−1-Octene Copolymerization and Methyl Methacrylate Polymerization Catalysts , 2002 .

[30]  S. Becke,et al.  Bimetallic Titanocene or Zirconocene/Aluminium Complexes as Active Catalysts in Lactone Polymerization Reactions , 2001 .

[31]  M. Galakhov,et al.  μ-Benzyl and μ-Chloro Dinuclear Cationic Titanium Compounds , 2001 .

[32]  P. Royo,et al.  Competitive Insertion of Isocyanide and Carbon Dioxide into Niobium− and Silicon−Amido Bonds , 2001 .

[33]  M. Lanfranchi,et al.  A New Type of Doubly Silylamido-Bridged Cyclopentadienyl Group 4 Metal Complexes. , 2001, Angewandte Chemie.

[34]  D. C. Bradley,et al.  Alkoxo and aryloxo derivatives of metals , 2001 .

[35]  P. Gómez-Sal,et al.  Synthetic and reactivity studies of mono- and dicyclopentadienyl titanium, zirconium and hafnium complexes with the chlorodimethylsilyl-cyclopentadienyl ligand. X-ray molecular structure of Hf{(η5-C5H4)SiMe2OSiMe2(η5-C5H4)}Cl2 and Zr(η5-1,3-tBu2C5H3)(η5-C5H4SiMe2-η-NtBu)Cl , 2000 .

[36]  W. Seo,et al.  Cyclopentadienyl−Hydrazido Titanium Complexes: Synthesis, Structure, Reactivity, and Catalytic Properties , 2000 .

[37]  P. Gracia,et al.  Synthetic and reactivity studies of mono- and dicyclopentadienyl titanium, zirconium and hafnium complexes with the chlorodimethylsilyl-cyclopentadienyl ligand. X-ray molecular structure of Hf{(η5-C5H4)SiMe2OSiMe2(η5-C5H4)}Cl2 and Zr(η5-1,3-tBu2C5H3)(η5-C5H4SiMe2-η-NtBu)Cl , 2000 .

[38]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[39]  W. Huh,et al.  Syntheses of polymethylene bridged dinuclear zirconocenes and investigation of their polymerisation activities , 1999 .

[40]  P. Royo,et al.  Amido−Imido Niobium Complexes with Chloro−Silyl- and Amino−Silyl-Functionalized Cyclopentadienyl Ligands , 1999 .

[41]  F. J. D. L. Mata,et al.  Synthesis and reactivity of new silyl-substituted monocyclopentadienyl molybdenum and tungsten complexes , 1999 .

[42]  T. Marks,et al.  Sterically encumbered (perfluoroaryl) borane and aluminate cocatalysts for tuning cation - Anion ion pair structure and reactivity in metallocene polymerization processes. A synthetic, structural, and polymerization study , 1998 .

[43]  A. A. Martin,et al.  Chlorosilyl-Substituted Monocyclopentadienyl Niobium Chloro, Imido Chloro, and Benzyl Complexes. X-ray Molecular Structure of [{(NbCl2)2(μ-O)(μ-Cl)2}{(η5-C5H4)2(Me2SiOSiMe2)}] , 1998 .

[44]  S. Collins,et al.  Polymerization of Methyl Methacrylate Using Zirconocene Initiators: Polymerization Mechanisms and Applications , 1997 .

[45]  R. Gómez,et al.  Synthesis and Reactivity of [(Amidosilyl)cyclopentadienyl]titanium and -zirconium Complexes. X-ray Molecular Structure of [Zr{η5:η1-C5H4SiMe2(μ-O)}Cl2{H2N(CHMe)Ph}]2† , 1996 .

[46]  A. Horton,et al.  Cationic Alkylzirconium Complexes Based on a Tridentate Diamide Ligand: New Alkene Polymerization Catalysts , 1996 .

[47]  P. Gómez-Sal,et al.  New Silyl-Substituted Cyclopentadienyl Titanium and Zirconium Complexes. X-ray Molecular Structures of [TiCl2{.mu.-(OSiMe2-.eta.5-C5H4)}]2 and [ZrCl2{.mu.-[(.eta.5-C5H4)SiMe2OSiMe2(.eta.5-C5H4)]}] , 1995 .

[48]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[49]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[50]  F. Palacios,et al.  (C5Me5)SiMe3 as a mild and effective reagent for transfer of the C5Me5 ring: an improved route to monopentamethylcyclopentadienyl trihalides of the group 4 elements , 1988 .