A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli

The trimethylamine N‐oxide (TMAO) reductase of Escherichia coli is a soluble periplasmic molybdoenzyme. The precursor of this enzyme possesses a cleavable N‐terminal signal sequence which contains a twin‐arginine motif. By using various moa, mob and mod mutants defective in different steps of molybdocofactor biosynthesis, we demonstrate that acquisition of the molybdocofactor in the cytoplasm is a prerequisite for the translocation of the TMAO reductase. The activation and translocation of the TMAO reductase precursor are post‐translational processes, and activation is dissociable from translocation. The export of the TMAO reductase is driven mainly by the proton motive force, whereas sodium azide exhibits a limited effect on the export. The most intriguing observation is that translocation of the TMAO reductase across the cytoplasmic membrane is independent of the SecY, SecE, SecA and SecB proteins. Depletion of Ffh, a core component of the signal recognition particle of E.coli, appears to have a slight effect on the export of the TMAO reductase. These results strongly suggest that the translocation of the molybdoenzyme TMAO reductase into the periplasm uses a mechanism fundamentally different from general protein translocation.

[1]  D. Rees,et al.  Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase , 1995, Science.

[2]  S. Brink,et al.  Pathway specificity for a ΔpH‐dependent precursor thylakoid lumen protein is governed by a 'sec‐avoidance’ motif in the transfer peptide and a 'sec‐incompatible’ mature protein , 1997, The EMBO journal.

[3]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[4]  L. Wu,et al.  Requirement for nickel of the transmembrane translocation of NiFe‐hydrogenase 2 in Escherichia coli , 1996, FEBS letters.

[5]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[6]  K. Shanmugam,et al.  Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli , 1995, Journal of bacteriology.

[7]  E. L. Barrett,et al.  Bacterial reduction of trimethylamine oxide. , 1985, Annual review of microbiology.

[8]  M. Müller,et al.  The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. , 1995, European journal of biochemistry.

[9]  D. Rees,et al.  Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination , 1996, Science.

[10]  J E Gander,et al.  Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. , 1972, The Journal of biological chemistry.

[11]  K. Rajagopalan,et al.  Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants , 1996, Journal of bacteriology.

[12]  G. Voordouw,et al.  Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein. , 1992, Journal of general microbiology.

[13]  R. Gunsalus,et al.  Properties of the Periplasmic ModA Molybdate-binding Protein of Escherichia coli(*) , 1996, The Journal of Biological Chemistry.

[14]  L. Randall,et al.  Correlation of competence for export with lack of tertiary structure of the mature species: A study in vivo of maltose-binding protein in E. coli , 1986, Cell.

[15]  J. Beckwith,et al.  Evidence for specificity at an early step in protein export in Escherichia coli , 1985, Journal of bacteriology.

[16]  S. Subramani,et al.  Protein import into peroxisomes and biogenesis of the organelle. , 1993, Annual review of cell biology.

[17]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[18]  H. D. Peck,et al.  Structure-function relationships among the nickel-containing hydrogenases. , 1992, FEMS microbiology reviews.

[19]  G. Giordano,et al.  TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon , 1994, Molecular microbiology.

[20]  D. Scott,et al.  Molybdenum accumulation in chlD mutants of Escherichia coli , 1989, Journal of bacteriology.

[21]  G. von Heijne,et al.  Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle , 1996, FEBS letters.

[22]  G. Taubes Atomic Mouse Probes the Lifetime of a Quantum Cat , 1996, Science.

[23]  T. Silhavy,et al.  The E. coli ffh gene is necessary for viability and efficient protein export , 1992, Nature.

[24]  C. Gwizdek,et al.  In vivo membrane assembly of the E.coli polytopic protein, melibiose permease, occurs via a Sec‐independent process which requires the protonmotive force. , 1996, The EMBO journal.

[25]  R. Herrmann,et al.  A new type of signal peptide: central role of a twin‐arginine motif in transfer signals for the delta pH‐dependent thylakoidal protein translocase. , 1995, The EMBO journal.

[26]  W. Wickner,et al.  Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. , 1985, The Journal of biological chemistry.

[27]  R. Huber,et al.  Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. , 1996, Journal of molecular biology.

[28]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[29]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.

[30]  G. Ames,et al.  Simple, rapid, and quantitative release of periplasmic proteins by chloroform , 1984, Journal of bacteriology.

[31]  M. Saier,et al.  Membrane insertion of the mannitol permease of Escherichia coli occurs under conditions of impaired SecA function. , 1992, The Journal of biological chemistry.

[32]  J. Beckwith,et al.  The secE gene encodes an integral membrane protein required for protein export in Escherichia coli. , 1989, Genes & development.

[33]  M. Casadaban,et al.  Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. , 1976, Journal of molecular biology.

[34]  G. Giordano,et al.  High substrate specificity and induction characteristics of trimethylamine-N-oxide reductase of Escherichia coli. , 1996, Biochimica et biophysica acta.

[35]  K. Shanmugam,et al.  Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli , 1995, Journal of bacteriology.

[36]  A. Mant,et al.  A Monomeric, Tightly Folded Stromal Intermediate on the pH-dependent Thylakoidal Protein Transport Pathway (*) , 1995, The Journal of Biological Chemistry.

[37]  G. Giordano,et al.  The inducible trimethylamine N-oxide reductase of Escherichia coli K12: its localization and inducers. , 1989, Biochimica et biophysica acta.

[38]  M. Ansaldi,et al.  Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli. , 1997, Journal of molecular biology.

[39]  S. High,et al.  An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. , 1994, The EMBO journal.

[40]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[41]  J. A. Newitt,et al.  The E. coli Signal Recognition Particle Is Required for the Insertion of a Subset of Inner Membrane Proteins , 1997, Cell.

[42]  A. Campbell,et al.  Molybdate reduction by Escherichia coli K-12 and its chl mutants. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[43]  V. Stewart,et al.  Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci , 1982, Journal of bacteriology.

[44]  T A Rapoport,et al.  Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. , 1996, Annual review of biochemistry.

[45]  C. Murphy,et al.  Insertion of the Polytopic Membrane Protein MalF Is Dependent on the Bacterial Secretion Machinery (*) , 1996, The Journal of Biological Chemistry.

[46]  V. Gladyshev,et al.  Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster , 1997, Science.

[47]  S. Subramani Convergence of model systems for peroxisome biogenesis. , 1996, Current opinion in cell biology.

[48]  J. Beckwith,et al.  E. coli mutant pleiotropically defective in the export of secreted proteins , 1981, Cell.

[49]  G. Voordouw Evolution of Hydrogenase Genes , 1992 .

[50]  M. Mandrand,et al.  Microbial hydrogenases: primary structure, classification, signatures and phylogeny. , 1993, FEMS microbiology reviews.

[51]  A. Seluanov,et al.  FtsY, the Prokaryotic Signal Recognition Particle Receptor Homologue, Is Essential for Biogenesis of Membrane Proteins* , 1997, The Journal of Biological Chemistry.

[52]  M. Ishimoto,et al.  Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli , 1981, Journal of bacteriology.

[53]  J. Beckwith,et al.  Residues essential for the function of SecE, a membrane component of the Escherichia coli secretion apparatus, are located in a conserved cytoplasmic region. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Beckwith,et al.  Characterization of cold-sensitive secY mutants of Escherichia coli , 1990, Journal of bacteriology.